盱眙东阳汉墓群出土铜盆 的材质和工艺

Material and Technology of Copper Basin Unearthed from Dongyang Han Tombs in Xuyi

供稿|余子骅^{1,2},李军^{1,2},陈刚³,田建花^{1,2}/YU Zihua^{1,2},LI Jun^{1,2}, CHEN Gang³, TIAN Jianhua^{1,2}

为了解汉代江淮地区铜器的制作技术和腐蚀特征,对盱眙东阳汉墓群出土的铜盆的本体和锈蚀 进行了成分及显微组织分析,结果显示铜盆用铜锡铅三元合金铸造,后腹壁和底部进行了退火和局 部热锻处理。锈蚀和本体的铜、锡含量存在明显差异,可能与腐蚀导致的表面锡富集有关。锈蚀产 物主要为赤铜矿、锡石、白铅矿、孔雀石、蓝铜矿,锈蚀内层为赤铜矿与锡石层夹杂,外层为孔雀 石、锡石、白铅矿夹杂的形态分布。

东阳汉墓群位于江苏省盱眙县马坝镇,是江苏 省金马高速(金湖县至盱眙县马坝镇)公路工程建 设过程中发现的墓葬群。该墓地出土了一定数量的 青铜器,器物类型并不丰富,主要包括铜盆、铜 镜、带钩、铜刷和铜钱几种。鉴于容器更能体现技 术的复杂性和规律性,本研究利用现代科技手段对 东阳汉墓出土铜盆的合金成分、金相组织、锈蚀结 构等进行了检测分析,一方面充实了汉代江淮地区 青铜文物分析的数据库,另一方面可为解读西汉时 期江淮地区青铜技术及地域腐蚀特征提供参考价值。

实验

本体成分与显微组织分析

内

容

导

读

取样时本着尽可能不破坏文物又能满足基本

研究目标的原则,整理文物残片后,选取 15 件铜 盆的 17 件样品进行了金相分析和扫面电镜能谱 分析。

选取样品均为剥落的残片,以其断面为检测 面,使用热固性酚醛树脂镶嵌,用 61~6.5 μm 不同 粒度的砂纸在磨抛一体机上打磨、抛光达到样品制 备要求。所有样品先不经浸蚀,置于蔡司 AXIO Scope A1 型金相显微镜明场模式下观察夹杂物及其 组织形态,用质量分数 3% 三氯化铁盐酸乙醇溶液 浸蚀后,置于金相显微镜下观察金属基体。将腐蚀 后的金相样品重新抛光,进行喷金处理,然后置于 型号为 JSM-6480LV 的扫描电子显微镜下进行形貌 观察和能谱分析,所用 X 射线能谱仪型号为 NORAN system,分析条件:加速电压 30 kV,计数

作者单位: 1. 南京博物院,江苏 南京 210016; 2. 金属文物保护江苏省文化和旅游重点实验室,江苏 南京 210016; 3. 江苏省文物考古研究院, 江苏 南京 210016

60 s, 平均成分采用面扫分析, 分析时的电子束尽可 能大,放大倍数尽可能小,使扫描面积尽可能大, 分析结果见表1和图1~17。

锈蚀成分与结构分析

> X 射线荧光光谱分析

选取典型样品清理表面硬结物和污染物后,采

表1	铜盆样品本体金相观察与扫描电镜能谱分析结果
----	-----------------------

样品	吉 器物	取样	样品	元素质量分数/%		数/%			
编号	子 编号	部位	厚度/ mm	Cu	Sn	Pb	0	金相描述	工艺
DY	1 M21:9	腹壁	0.85	85.5	6.4	3.0	5.1	受热后成分趋于均匀化,α固溶体树枝晶偏析消失,细小的铅 颗粒弥散分布。晶界存在锈蚀,有球状自由铜沉积于锈蚀 处。	铅锡青铜铸后受 热
DY	2 M37:9	口沿	0.96	79.3	13.7	4.0	3.0	存在α再结晶晶粒及孪晶,细小铅颗粒分散在晶界,部分晶内 存在滑移带,有球状自由铜沉积于晶界锈蚀处。 左在α团滚体晶粒,树枝晶偏板其本消生,细小织颗粒分布在	铅锡青铜热锻局 部冷加工
DY	3 M62:20	口沿	2.18	79.0	12.3	3.7	5.0	晶界或晶间,较多锈蚀沿晶间分布,大量自由铜颗粒沉积于 晶间锈蚀处,局部晶粒处存在滑移带,说明进行过冷加工。	铅锡青铜铸后受 热局部冷加工
DY	4 M62:20	腹壁	0.65	82.2	10.4	2.9	4.5	α固溶体产生再结晶晶粒和孪晶,晶界存在的黑点,部分是 铅,部分为孔洞。 存在α固溶体 铸造树枝晶偏析消生 颗粒状 冬状 团块状	铅锡青铜热锻
DY	5 M111:1	口沿	2.91	74.3	8.5	10.1	7.1	铅弥散分布,部分已被锈蚀或被磨抛出孔洞,有自由铜颗粒 沉积于锈蚀处。	铅锡青铜铸后受 热
DY	6 M114:21	底部	0.78	74.6	11.7	2.9	10.8	黑色铅颗粒分布在α固溶体的晶界或晶间,原树枝晶偏析消 失,晶间存在较多孔洞。样品一侧边缘有α再结晶晶粒及孪 晶,说明局部经过执加工。	铅锡青铜铸后受 热,局部热锻
DY	7 M114:54	口沿	1.08	78.9	12.0	4.3	4.8	存在a固溶体,铸造枝晶偏析基本消失,细小铅颗粒弥散分 布,呈现受热组织均匀化的特征。	铅锡青铜铸后受 热
DY	8 M116:2	口沿	1.47	66.6	2.8	24.7	5.9	α固溶体树枝晶偏析, 大重条状、团块状铅呈枝晶状连续均匀 分布, 部分铅被锈蚀或被磨抛出孔洞, 锈蚀处有硫化物夹 杂。	铅锡青铜铸造
DY	9 M124:4	腹壁	0.49	75.7	13.2	4.5	6.6	存在α固溶体再结晶晶粒和孪晶,晶界存在的黑点,部分是 铅,部分为孔洞。 。	铅锡青铜热锻
DYI	0 M138:11	口沿	1.56	67.8	11.5	8.5	9.9 (2.3) [#]	布,大小不一的球状铅颗粒沿枝晶分布,硫化物颗粒夹杂其中。	铅锡青铜铸造
DYI	1 M138:11	腹壁	0.61	77.2	8.5	6.4	7.9	α固溶体再结晶晶粒和孪晶,晶界存在的黑点,部分是铅,部 分为孔洞。	铅锡青铜热锻
DYI	2 M142:15	口沿	3.51	70.5	14.1	6.5	8.9	α固溶体转這树校誼剛竹基平泪天, 细小的0柏分布在校誼问 隙, 大量球状铅分布于晶界和晶内, 腐蚀沿晶界发生, 有硫 化物沉积在腐蚀裂隙中。	铅锡青铜铸后受 热
DYI	3 M146:24	腹壁	0.64	81.1	8.5	1.5	8.4 (0.5) [^]	α固溶体呈大晶粒状,细小铅颗粒弥散分布,晶间存在孔洞, 有硫化物与自由铜沉积其中。	铅锡青铜铸后受 热
DYI	4 M149:7	口沿	1.27	75.7	12.5	4.4	7.4	值回浴评榜垣牧丽丽竹茎平有天, 至现交然组织均均化的符 征, 铅颗粒弥散分布, 部分晶内存在滑移线, 样品边缘处有 等轴晶和孪晶, 晶内有滑移线。	招访目铜诗后受 热,局部热锻和 冷加工
DYI	5 M154:8	口沿	1.63	82.9	2.7	7.7	6.3 $(0.4)^*$	α固溶体树枝晶偏析,晶间分布有 $(\alpha+\delta)$ 共析组织,铅呈枝晶状连续均匀分布。	铅锡青铜铸造
DYI	6 M170:17	腹壁	0.48	59.2	3.3	10.1	(4.4, 3.9) ^{&}	α固溶体树枝晶偏析,(α+δ)共析体基本锈蚀殆尽,颗粒 状、角状铅沿枝晶集聚或分布。	铅锡砷青铜铸造
DYI	7 M189:6	口沿	1.14	76.4	12.1	2.1	9.4	α固溶体晶粒,晶内偏析消失,晶界分布有呈不规则多角状和 块状的铅,小颗粒铅多分布在晶内,样品边缘处有孪晶出 现。	铅锡青铜铸后受 热,局部热锻
注:	注:"2.3为As质量分数,%;^0.5为S质量分数,%;*0.4为As质量分数,%;*4.4和3.9分别为S和As质量分数,%。								

图 1 DY1 金相组织

图 2 DY2 金相组织

图 3 DY3 金相组织

图 4 DY4 金相组织

图 5 DY5 金相组织

图 6 DY6 金相组织

图 7 DY7 金相组织

图 8 DY8 金相组织

图 9 DY9 金相组织

图 10 DY10 金相组织

图 11 DY11 金相组织

图 12 DY12 金相组织

图 13 DY13 金相组织

图 14 DY14 金相组织

图 15 DY15 金相组织

图 16 DY16 金相组织

图 17 DY17 金相组织

用 Thermo Niton XL3t 980 型手持式 X 射线荧光光谱 仪测试表面锈蚀成分。为了对比锈蚀成分与本体成 分,通过机械打磨去除样品大部分锈蚀后测试本体 成分,仪器参数:检测窗口直径为 8 mm,最大 X 光 管电压为 50 kV,最大管流为 40 μA,测试时均选择 金属模式,每次检测时间 60 s,结果取平均值。分 析结果见表 2。

> X 射线衍射分析

刮取样品上的锈蚀产物,放入玛瑙研钵中研磨

	14	4 拘益件吅平许	可防蚀土安风力	了 例 结 未 (灰 里	[刀] 蚁 / /0		
样品号	分析部位	Cu	Sn	Pb	Fe	As	Sb
DVI	本体	89.1	6.9	2.3	0.4	0.1	0.4
DYI	锈蚀	69.6	20.2	3.3	4.2		0.6
DVA	本体	78.0	16.2	3.0	1.0	0.2	0.3
DY2	锈蚀	27.1	53.2	6.6	9.9		0.5
DV2	本体	80.3	14.7	2.2	0.7	0.3	0.4
DY3	锈蚀	71.6	18.9	3.3	2.9	0.7	0.5
DV	本体	67.2	11.2	19.2	1.0		0.4
DYS	锈蚀	15.5	39.0	34.6	8.1		0.9
DV/	本体	78.5	15.8	2.7	1.2	0.1	0.4
DY6	锈蚀	71.5	20.1	4.2	2.4	0.2	0.5
DV7	本体	68.6	14.3	14.2	1.0	0.3	0.4
DY/	锈蚀	29.7	48.1	11.8	7.8		0.7
DV0	本体	70.3	3.4	23.7	0.2	0.3	1.0
DY8	锈蚀	35.4	9.4	48.2	1.7	1.8	1.5
DV0	本体	59.7	2.8	8.6	3.1		0.2
DY9	锈蚀	9.4	59.9	11.1	14.8		0.2
DV10	本体	81.9	12.9	3.0	0.1	0.4	0.3
DYIO	锈蚀	23.6	52.8	10.1	8.7	1.1	0.5
DV10	本体	72.1	18.8	6.1	0.4	0.8	0.4
DY12	锈蚀	60.6	25.2	8.8	1.5	1.4	0.6
DV12	本体	75.4	15.8	4.6	2.3		0.3
DY13	锈蚀	80.5	12.7	3.1	1.7	0.3	0.3
DV14	本体	50.7	34.0	7.8	4.0	0.7	0.7
DY14	锈蚀	8.0	68.6	8.3	11.0	0.8	1.0
DV16	本体	88.8	2.7	6.3	0.2	0.4	0.6
DYIS	锈蚀	61.7	10.3	17.9	2.4	4.2	1.5
DV1(本体	83.3	5.2	7.0	0.3	2.0	1.1
DY16	锈蚀	17.7	13.4	48.0	3.6	11.8	2.7
DV17	本体	79.8	13.6	4.1	0.9		0.6
DY1/	锈蚀	53.8	27.5	7.8	7.1	0.7	0.9

表 2 铜盆样品本体与锈蚀主要成分分析结果(质量分数) %

至 75 μm, 平铺于无背景硅片上,表面压平后置于 PANalytical Empyrean 型 X 射线衍射仪上进行测试。 测试条件为:工作电压 40 kV,工作电流 40 mA,分 析角度 10°~80°, 靶材为 Cu 靶。受样品量限制, 15 个样品中有 10 个样品检测出结果,结果见表 3 和 图 18~19。

表 3 铜盆锈蚀 X 射线衍射分析结果

样品号	锈蚀产物
DY1	锡石(SnO ₂),赤铜矿(Cu ₂ O)
DY3	锡石(SnO ₂),赤铜矿(Cu ₂ O),白铅矿(PbCO ₃)
DY5	白铅矿 (PbCO ₃)
DY6	赤铜矿 (Cu ₂ O)
DY7	赤铜矿 (Cu ₂ O)
DY8	白铅矿(PbCO ₃),孔雀石(Cu ₂ (OH) ₂ CO ₃)
DY12	石英(SiO ₂),黑铜矿(CuO)
DY14	锡石(SnO ₂),石英(SiO ₂)
DY15	赤铜矿(Cu ₂ O)、孔雀石(Cu ₂ (OH) ₂ CO ₃)
DY17	蓝铜矿(Cu ₃ (CO ₃) ₂ OH ₂),白铅矿(PbCO ₃)、锡石
	(SnO ₂)

金相观察

铜盆锈蚀的组织结构是在金相显微镜的暗场模 式下观察的,样品制备过程与上文所述用于明场观 察的样品制备过程一致。初步观察锈层的颜色和结 构特点后,对锈蚀进行了X射线衍射分析和拉曼光 谱分析,验证了通过颜色形态所判断的锈蚀物相。 受样品量与制样所限,15件样品中有6件样品可在 暗场模式下观察锈层结构与锈蚀结构。典型锈蚀结 构见表4和图20。

讨论

东阳汉墓铜盆的合金特点

由于手持式 X 射线荧光仪与电镜能谱仪的工作 电压、样品分析面积存在差异,以及金属组织的不 均匀性,造成部分样品的 X 射线荧光分析结果与电 镜能谱分析结果存在一定差异,但并不影响分析结 果的客观性与准确性。结合 X 射线荧光光谱分析与 电镜能谱分析结果,依据本体砷质量分数是否大于

图 18 X 射线衍射分析谱图: (a) DY1; (b) DY3; (c) DY5; (d) DY6

图 19 X 射线衍射分析谱图: (a) DY7; (b) DY8; (c) DY12; (d) DY14; (e) DY15; (f) DY17

出日日		质量分数/%		(赤 かわ 2日 2日
个十四 与	Cu	Sn	Pb	防氓组织
DY1	64.7	11.2	4.5	青铜基体,赤铜矿,锡石,孔雀石
DY2	79.3	13.7	4.0	青铜基体,赤铜矿,锡石,孔雀石,石英
DY9	75.6	13.2	4.5	青铜基体,锡石,孔雀石
DY13	81.1	8.0	1.5	青铜基体,赤铜矿
DY15	82.8	2.6	7.6	青铜基体,赤铜矿,孔雀石/白铅矿
DY16	59.1	3.3	10.0	青铜基体,赤铜矿,孔雀石/白铅矿/锡石

图 20 金相暗场下锈蚀组织: (a) DY1; (b) DY2; (c) DY9; (d) DY13; (e) DY15; (f) DY16

等于 2%^[1],将本次分析的 15件铜盆组成划分为 14件材质为铜锡铅三元合金,1件为铜锡铅砷合 金。本次分析样品中铜、锡、铅的含量变化范围都 比较广,无明显的规律性分布特征。因夹杂物的存 在,铁含量也普遍较高。考虑到铜盆是汉代的一般 用器而非专门定制的礼乐器,材料的使用方面可能 会受到生产者金属资源和制作习惯的影响,进而导 致整体看来合金配比可能存在一定随意性。

东阳汉墓铜盆的制作工艺

东阳汉墓铜盆的显微组织,有铸造组织、铸后 受热组织、热锻组织及铸后受热且局部热锻或者冷 加工组织。17件样品中,13件铸后受热(包含热 锻),所以铜盆具有受热历史是其最显著的特点。 另外,也存在同一样品有2种显微组织的情况,例 如样品 DY2 主体显示为热锻组织,局部却有冷加工 导致的滑移带;样品 DY3、DY6、DY14、DY17主 体显示为铸后受热组织,局部却有热锻、冷加工 组织。

从样品部位来看,10件口沿样品中,显示为铸造组织有3件(DY8,DY10,DY15),铸后受热组织有3件(DY5,DY7,DY12),铸后受热局部存在冷热加工组织3件(DY3,DY14,DY17),

热锻局部冷加工1件(DY2)。7件腹壁或底部样品中,显示为铸后受热组织的有2件(DY1,DY13),显示为热锻组织的有3件(DY4,DY9,DY11),铸造组织的1件(DY16),铸后受热且局部热锻的1件(DY6)。整体来看,腹壁或底部进行过加工处理的比率远高于口沿部位,受热的比率也高于口沿。

7件腹壁或底部样品的厚度均为 0.48~0.85 mm, 平均厚度仅为 0.64 mm, 10件口沿样品的厚度在 0.96~3.51 mm,平均厚度 1.77 mm,腹壁样品的平均 厚度远低于口沿。秦颍等^[2]研究了湖北及安徽出土 的东周至秦汉时期热锻青铜容器,19件样品的厚度 在 0.4~0.9 mm,平均厚度约为 0.68 mm。李洋^[3] 通 过统计研究,将热锻薄壁青铜器的壁厚范围定位在 0.5~1.5 mm。结合已发表的锻造青铜器的壁厚情况 分析,东阳汉墓铜盆样品腹壁或底部,小部分口沿 的厚度都在热锻薄壁器厚度的范围之内。

一般来说,铜器铸后受热有2种类型,(1)作 为制作工艺的一部分,铸造后基于器物性能、功能 或者造型需求的加热处理,即主动的退火处理,改 善材料的塑性和韧性, 使化学成分均匀化, 去除残 余应力,得到预期的物理性能^[4]。如退火同时进行热 锻,使器壁变薄,节省原料,改善机械性能,提高 强度指数、韧性和塑性,但是会令硬度下降^[5],这种 情况一般会伴随有加工组织。(2)与工艺无关,生 产制作完成后使用过程中受热,例如作为容器基于 所盛物质蒸煮等需要经历的受热,或者是祭祀、埋 藏过程中的火烧等情况。这类情况一般不会伴随普 遍的热加工组织改变。鉴于铜盆作为日常实用器皿 会追求节省原料、更轻便、韧性强等因素,以及样 品腹壁多显示热锻和冷加工组织的情况,更倾向于 大部分东阳汉墓铜盆铸后受热是第一种情况, 当然 不排除零星器物是第二种情况或者两种兼有的 情况。

结合样品的取样位置、厚度、成分数据及显微 组织综合来看,东阳汉墓铜盆主流的制作工艺可能 包括了两个环节,首先是铸造,形成铜盆的大体器 型,然后根据器物的厚薄和形制情况重点对腹壁和 底部进行退火和锻打加工。由于铜盆口沿处的样品 金相组织以铸造(退火)为主,若先铸成板材,再 热锻加工成盆状,则较难观察到口沿处的铸造组 织,因此采用这种制作工艺的可能性较低。此外, 由于铜盆并非出自同一墓葬,也并非出自高等级墓 葬,所以整体上呈现出口沿仅铸造、腹壁和底部铸 后退火且锻打呈薄壁的趋势。工艺细节欠缺一致 性,有零星样品仅铸造,也有腹壁样品受热未加工 情况,说明热处理和加工处理不是全面覆盖到铜盆 腹壁和底部的每一处,有一定的随意性。

东阳汉墓铜盆的腐蚀特征

对比每件样品的本体与表面锈蚀的成分,整体 呈现出表面锈蚀锡含量明显高于本体,相应铜含量 低于本体的特征。这主要是因为埋藏土壤中的青铜 器表层中的铜不断被氧化为铜离子流失,而锡的氧 化物不溶于水,在原位沉积,故出现表面富锡 现象。

锈蚀产物主要为赤铜矿、黑铜矿、锡石、白铅 矿、孔雀石、蓝铜矿几类。依据张晓梅等^[6]、刘薇^[7] 等的研究,可将常见青铜器锈层结构分为2种(由 内向外)结构,A类为纯铜+赤铜矿+锡石形成的薄 层—锡石层—孔雀石层;B类为赤铜矿层——孔雀 石、蓝铜矿、锡石层。从表面锈层结构来看,东阳 汉墓出土铜盆的整体锈层结构内层为赤铜矿与锡石 层夹杂,外层为孔雀石、锡石、白铅矿夹杂的形态 分布,与A类锈蚀的特征较为接近。

结束语

对 17 件东阳汉墓出土的青铜盆样品进行了金相 与成分分析,结果显示其材质以铜锡铅三元合金为 主,含铁夹杂物的含量比较高。

东阳汉墓出土铜盆普遍存在铸后受热历史,器 壁和底部显示出薄壁特征,综合分析认为其主流工 艺应为铸后退火再局部热锻,热锻主要针对腹壁和 底部。

锈蚀和本体的铜、锡含量存在明显差异,可能 腐蚀导致的表面锡富集有关。锈蚀产物主要为赤铜 矿、锡石、白铅矿、孔雀石、蓝铜矿几类,锈层结 构主要以内层为赤铜矿与锡石层夹杂,外层为孔雀 石、锡石、白铅矿夹杂的形态分布。

金為世子 39 📕

余品世多

参考文献

- [1] 孙淑元,韩汝玢,李秀辉.中国古代金属材料显微组织图谱有
 色金属卷.北京:科学出版社,2011
- [2] 秦颍,李世彩,晏德付,等.湖北及安徽出土东周至秦汉时期 热锻青铜容器的科学分析.文物,2015(7):89
- [3] 李洋. 炉捶之间: 先秦两汉时期热锻薄壁青铜器研究. 上海:上 海古籍出版社, 2017
- [4] 梁克中.金相:原理与应用.北京:中国铁道出版社,1983
- [5] 曾庆硕,陈典,崔本信,等.南阳淅川葛家沟出土青铜器的初步科学分析研究.博物院,2020(2):89
- [6] 张晓梅,原思训,刘煜,等.周原遗址及强国墓地出土青铜器

锈蚀研究. 文物保护与考古科学, 1999, 11(2): 7

[7] 刘薇,李玲,卫扬波,等.湖北叶家山墓地出土青铜器的锈层 结构研究. 江汉考古,2019(4):116

基金项目: 江苏省科技计划资助项目(BE2021733)。

作者简介:余子骅(1991—),男,硕士,助理馆员,就职于南京博物院,主要研究方向为金属质地文物的制作工艺与锈蚀特征。通信地址:江苏省南京市玄武区清 溪路1号。E-mail: yuzihuakamiao@163.com。