留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁合金微弧氧化表面处理技术研究进展及展望

巩锐 侯步逸 陈彤 王延龙 李兰芸 李宏伟 张新

巩锐, 侯步逸, 陈彤, 王延龙, 李兰芸, 李宏伟, 张新. 镁合金微弧氧化表面处理技术研究进展及展望[J]. 金属世界, 2021 (4): 8-18. doi: 10.3969/j.issn.1000-6826.2021.04.0002
引用本文: 巩锐, 侯步逸, 陈彤, 王延龙, 李兰芸, 李宏伟, 张新. 镁合金微弧氧化表面处理技术研究进展及展望[J]. 金属世界, 2021 (4): 8-18. doi: 10.3969/j.issn.1000-6826.2021.04.0002
Rui GONG, Bu-yi HOU, Tong CHEN, Yan-long WANG, Lan-yun LI, Hong-wei LI, Xin ZHANG. Research Progress and Prospect of Micro Arc Oxidation Surface Treatment Technology for Magnesium Alloys[J]. Metal World, 2021 (4): 8-18. doi: 10.3969/j.issn.1000-6826.2021.04.0002
Citation: Rui GONG, Bu-yi HOU, Tong CHEN, Yan-long WANG, Lan-yun LI, Hong-wei LI, Xin ZHANG. Research Progress and Prospect of Micro Arc Oxidation Surface Treatment Technology for Magnesium Alloys[J]. Metal World, 2021 (4): 8-18. doi: 10.3969/j.issn.1000-6826.2021.04.0002

镁合金微弧氧化表面处理技术研究进展及展望

doi: 10.3969/j.issn.1000-6826.2021.04.0002
基金项目: 国家重点研发计划项目(2019YFC1511400)
详细信息
    作者简介:

    巩锐(1978—),男,辽宁阜新人,高级工程师。2001年毕业于沈阳理工大学机械工程专业,主要研究方向:军用履带车辆、军用挂车。研发的多款军用挂车实现了工程化应用,曾获得总后勤部科技进步二等奖。通信地址:100072北京市丰台区朱家坟五里五号,E-mail:gongrui3003@aliyun.com

Research Progress and Prospect of Micro Arc Oxidation Surface Treatment Technology for Magnesium Alloys

  • 摘要: 镁合金具有的独特性能已在汽车、航空、航天、电子、兵工等领域广泛应用,但其极易腐蚀的缺点给设备的安全、稳定运行带来潜在的危险,甚至造成重大经济损失。本文从微弧氧化技术的研究现状着手,重点讨论了电解液体系、电参数、氧化时间、添加剂等对镁合金陶瓷膜性能的影响,进而分析了微弧氧化陶瓷膜的组成、结构特征和形成过程,并提出了镁合金微弧氧化的发展方向。
  • 图  1  微弧氧化装置示意图[10]

    图  2  微弧氧化技术发展历程图[12]

    图  3  微弧氧化过程电流-电压关系[14]

    图  4  微弧氧化过程示意图[27]

    图  5  AZ91D合金微弧氧化膜层的形貌[37]

    图  6  正常膜层与破坏膜层表面的SEM图[44]

    图  7  不同脉冲频率下所得MAO膜的表面形貌[46]

    图  8  微弧氧化膜层的微观形貌[72]

    图  9  AZ31微弧氧化涂层[74]

    表  1  微弧氧化与阳极氧化技术比较

    氧化
    工艺
    电压电流工艺流程处理时间/
    min
    最大膜层厚度/mm工作
    温度/℃
    氧化处理膜层均匀性氧化膜相结构5%盐雾腐蚀/h硬度/HV孔隙率/%
    微弧氧化高压、电流密度大易于操作10~30200~300<45化学氧化、电化学氧化等内外表面均匀晶态
    氧化物
    >1000500~
    3000
    0~40
    阳极氧化低压、电流密度小较为复杂60~12050~8050~80化学氧化、电化学氧化等尖角类缺陷无定形相>300300~
    500
    >40
    下载: 导出CSV
  • [1] Hillis J E. Surface Engineering of Magnesium Alloys. Materials Park, OH: ASM International, 1994.
    [2] Ashworth V, Proctor R P M, Garnt W A. Ion Implantation, Treatise on Materials Science and Technology. New York: Academic Press, 1980.
    [3] Han I, Hoi J H, Hao B H, et al. Micro-arc oxidation in various concentration of KOH and structural change by different cut of potential. Curr Appl Phys,2007,7(s1):23
    [4] Gray J E, Luan B. Protective coatings on magnesium and its alloys-Acritical review. J Alloys Compd,2002,336(1/2):88
    [5] Yerokhin A L, Lyubimov V V, Vhitkov R V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceram Int,1998,24(1):1 doi: 10.1016/S0272-8842(96)00067-3
    [6] Wang Z H, Zhang J M, Li Y, et al. Enhanced corrosion resistance of micro-arc oxidation coated magnesium alloy by superhydrophobic Mg-Al layered double hydroxide coating. Trans Nonferrous Met Soc China,2019,29(10):2066 doi: 10.1016/S1003-6326(19)65113-7
    [7] Yerokhin A L, Nie X, Leyland A. Plasma electrolysis for surface engineering. Surf Coat Technol,1999,122(2):73
    [8] Kurze P, Krysmann H G. Application fields of ANOF layers and composites. Cryst Res Technol,1986,21(12):1603 doi: 10.1002/crat.2170211224
    [9] Yerokhin A L, Nie X, Ley L A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol,1999,122:72
    [10] 蔡启舟, 刘峰, 严青松, 等. 镁合金微弧氧化Y2O3-ZrO2-MgO膜制备及性能. 华中科技大学学报(自然科学版), 2011(8):27
    [11] Kurse P. Magnesium legierungen electrochemisch be sch ichten. Metalloberflach,1994,48(2):104
    [12] Sis L B, Brown S D, Bao T V, et al. Polymorphic phases in anodic-spark-deposited coatings of A12O3. J Am Ceram Soc,2010,57(2):108
    [13] Cui X J, Lin X Z, Liu C H, et al. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros Sci,2015,90(1):402
    [14] Li Y H, Guan Y C, Zhang Z, et al. Enhanced bond strength for micro-arc oxidation coating on magnesium alloy via laser surface microstructuring. Appl Surf Sci,2019,478(1):866
    [15] Jayaraj R K, Sabari S S, Teja K P. Enhancing the corrosion resistance of stir zone of friction stir welded AZ31b magnesium alloy using micro arc oxidation coatings. Mater Today: Proc,2019,15(PartⅠ):68
    [16] Macdonald D, Macdonald M U. Distribution functions for the breakdown of passive films. Electrochimi Acta,1986,47(24):3863
    [17] 薛文斌, 邓志赢, 张通和, 等. 铸造镁合金微弧氧化机理. 稀有金属材料与工程, 1999,28(6):353 doi: 10.3321/j.issn:1002-185X.1999.06.005
    [18] 王志申, 孙志华, 王强, 等. ZM6铸造镁合金微弧氧化膜层性能研究. 材料工程, 2015,43(10):55 doi: 10.11868/j.issn.1001-4381.2015.10.009
    [19] 章志友, 赵晴, 陈宁. 镁合金微弧氧化膜相组成及结构分析. 材料保护, 2008,41(3):19
    [20] 马颖, 张青菊, 安凌云, 等. 电压对纯镁微弧氧化膜层电化学腐蚀行为的影响. 兰州理工大学学报, 2020,46(3):1 doi: 10.3969/j.issn.1673-5196.2020.03.001
    [21] Young L. Space charge in formation of anodic oxide films. Acta Metall Sin,1956,4(1):100
    [22] Zahavi Y J. Electrolytic breakdown crystallization of anodic oxide films on Al, Ta and Ti. Electrochim Acta,1970,15(9):1429 doi: 10.1016/0013-4686(70)80064-0
    [23] O’Dwyer J J. The theory of avalanche breakdown in solid dielectrics. J Phys Chem Solid,1967,28(7):1137 doi: 10.1016/0022-3697(67)90057-1
    [24] Vijh A K. Sparking voltages and side reactions during nodization of value metals in terms of electron tunneling. Corros Sci,1971,11(6):411 doi: 10.1016/S0010-938X(71)80125-7
    [25] Albella J M, Montero I, Martinez-Duart J M. Electron injection and avalanche during the anodic oxidation of tantalum. Cheminform,1984,131(5):1101
    [26] Rykallin N N, Nikolaev A V, Borahov A P. Energy balance of a high current hollow tungsten cathode. Fizikai Khimiya Obrabotki Materialov,1977,2:32
    [27] 陈宏, 崔晓, 郝建民, 等. AZ91D 镁合金微弧氧化膜微观形貌及形成过程研究. 稀有金属材料与工程, 2015,44(10):2435
    [28] Ly X N, Yang S, Nguyen T. Effect of equal channel angular pressing as the pretreatment on microstructure and corrosion behavior of micro-arc oxidation (MAO) composite coating on biodegradable Mg-Zn-Ca alloy. Surf Coat Technol,2020,395(8):125923
    [29] He X L, Liang H Y, Yan Z F, et al. Stress corrosion cracking behavior of micro-arc oxidized AZ31 alloy. J Mech Eng Sci,2020,234(8):1640 doi: 10.1177/0954406219894029
    [30] Jiang B L, Ge Y F. 7-Micro-Arc Oxidation (MAO) to Improve the Corrosion Resistance of Magnesium (Mg) Alloys. Woodhead: Corrosion Prevention of Magnesium Alloys, 2013: 163.
    [31] 阎峰云, 林华, 王胜. AZ91D镁合金在硅酸盐体系下微弧氧化配方的优化. 新技术新工艺, 2006(7):68 doi: 10.3969/j.issn.1003-5311.2006.07.026
    [32] 王萍, 李建平, 马群. Mg-9Gd-3Y-0.6Zn-0.5Zr镁合金微弧氧化配方的优化. 特种铸造及有色合金, 2008,28(7):502 doi: 10.3870/tzzz.2008.07.004
    [33] Wu G Q, Zhao D C, Lin X, et al. Investigation of an environmentally friendly coloring coating for magnesium-lithium alloy micro-arc oxidation. Surf Interfaces,2020,20(9):100513
    [34] Young G K, Seung N, Dong H S. Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation. Surf Coat Technol,2010,205(7):2525 doi: 10.1016/j.surfcoat.2010.09.055
    [35] Joni M S, Fattah-Aahosseini A. Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC Micro-arc oxidation (MAO) on AZ31B Mg alloy. Proc Instit Mech Eng, Part C: J Mech Eng Sci,2016,661:237
    [36] 李建中, 邵忠财, 田彦文. 不同含磷电解液在微弧氧化过程中的作用. 中国腐蚀与防护学报, 2004,24(4):222 doi: 10.3969/j.issn.1005-4537.2004.04.007
    [37] 蔡启舟, 王栋, 骆海贺, 等. 镁合金微弧氧化膜的SiO2溶胶封孔处理研究. 特种铸造及有色合金, 2006,26(10):612 doi: 10.3321/j.issn:1001-2249.2006.10.002
    [38] Liu S Q, Qi Y M, Peng Z J, et al. A chemical-free sealing method for micro-arc oxidation coatings on AZ31 Mg alloy. Surf Coat Technol,2021,406(1):126655
    [39] Han L, Li X, Xue F, et al. Biocorrosion behavior of micro-arc-oxidized AZ31 magnesium alloy in different simulated dynamic physiological environments. Surf Coat Technol,2019,361:240 doi: 10.1016/j.surfcoat.2019.01.052
    [40] Zhang J Q, Zhang L, Wilke B M, et al. Corrosion behaviour of microarc-oxidised magnesium alloy in Earle's balanced salt solution. Surf Innovations,2017,5(1):43 doi: 10.1680/jsuin.16.00019
    [41] Li N, Chen Y Q, Deng B, et al. Low temperature UV assisted sol-gel preparation of ZrO2 pore-sealing films on micro-arc oxidized magnesium alloy AZ91D and their electrochemical corrosion behaviors. J Alloys Compd,2019,792(5):1036
    [42] Wang R L, Li W, Luo J Y. Effects of electrical parameters on the thickness of micro-arc oxidation coating of zirconium. Rare Met Mater Eng,2011,40(6):1110
    [43] Yan S F, Liu X D, Chen W D, et al. Influence of oxidation time on MAO film on the surface of ZrH1.8 in a phosphate system. Rare Met Mater Eng,2014,43(7):1717
    [44] 王晟, 马颖, 宋承娣, 等. 镁合金微弧氧化持续电弧对膜层的破坏机制. 稀有金属材料与工程, 2020,49(6):1970
    [45] 张荣发, 单大勇, 陈荣石, 等. 电参数对镁合金微弧氧化膜厚度的影响. 中国有色金属学报, 2007,17(10):1574 doi: 10.3321/j.issn:1004-0609.2007.10.003
    [46] 苏立武, 葛延峰. 脉冲电流参量对镁合金微弧氧化过程的影响. 金属热处理, 2017,42(8):125
    [47] 吕维玲, 马颖, 陈体军, 等. 氧化时间对AZ91D镁合金微弧氧化膜微观组织和性能的影响. 中国有色金属学报, 2009,19(8):1385 doi: 10.3321/j.issn:1004-0609.2009.08.005
    [48] 蒋百灵, 张先锋. 镁合金微弧氧化陶瓷层的生长过程及其耐蚀性. 中国腐蚀与防护学报, 2005,25(2):71
    [49] Yu L, Cao J H, Cheng Y L. An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles. Surf Coat Technol,2015,276:266 doi: 10.1016/j.surfcoat.2015.07.014
    [50] Mustafa T, Cengizhan T, Faiz M, et al. Evaluation of wear and corrosion resistances of oxide coatings formed on magnesium alloys by micro-arc oxidation. Solid State Phenom,2016,263:125
    [51] Veys-renaux D, Barchiche C E, Rocca E. Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates. Surf Coat Technol,2014,251(8):232
    [52] Mosab K, Tassawar H, Zeeshan U, et al. Stabilization of AZ31 Mg alloy in sea water via dual incorporation of MgO and WO3 during micro-arc oxidation. J Alloys Compd,2021,853(2):157036
    [53] 杨晓飞, 田林海, 曹盛, 等. 纳米TiO2掺杂对AZ91D镁合金微弧氧化膜形貌及性能的影响. 机械工程材料, 2013,37(10):79
    [54] Laleh M, Kargar F, Sabour R A. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy. J Rare Earths,2012,30(12):1293 doi: 10.1016/S1002-0721(12)60223-3
    [55] Lee S J, Toan D L H. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy. Surf Coat Technol,2016,307:781 doi: 10.1016/j.surfcoat.2016.10.008
    [56] 乌迪, 刘向东, 吕凯, 等. 丙三醇对镁合金微弧氧化过程及膜层的影响. 材料保护, 2009,42(2):1
    [57] Küçükosman R, Şüküroğlu E E, Totik Y, et al. Investigation of wear behavior of graphite additive composite coatings deposited by micro arc oxidation-hydrothermal treatment on AZ91 Mg alloy. Surf Interfaces,2021,22:100894 doi: 10.1016/j.surfin.2020.100894
    [58] Li H X, Song R G, Ji Z G. Effects of Na no-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy. Trans Nonferrous Met Soc China,2013,23(2):406 doi: 10.1016/S1003-6326(13)62477-2
    [59] Liu F, Li Y J, Gu J J, et al. Preparation and performance of coating on rare-earth compounds-immersed magnesium alloy by micro-arc oxidation. Trans Nonferrous Met Soc China,2012,22(7):1647 doi: 10.1016/S1003-6326(11)61368-X
    [60] Chen H P, Cheng J G, Zhang M L, et al. Effect of rare earth oxide addition on the microstructure and properties of ultrafine grain W-20Cu composites. Rare Met Mater Eng,2018,47(9):2626 doi: 10.1016/S1875-5372(18)30199-1
    [61] 史敬伟, 邵忠财, 田彦文, 等. 稀土元素对镁合金微弧氧化的影响. 材料保护, 2007,40(5):7 doi: 10.3969/j.issn.1001-1560.2007.05.003
    [62] 马跃宇, 何德山, 涂思京, 等. 稀土对镁合金微弧氧化层的作用综述. 稀有金属, 2017,41(6):709
    [63] 陈海燕, 缪倩倩, 蒋永锋, 等. 稀土配合物对增强AZ31镁合金微弧氧化陶瓷层性能的作用. 材料保护, 2018,51(5):7
    [64] 吴海江, 杨飞英, 邹利华, 等. 镁合金表面铈盐掺杂硅烷膜的腐蚀电化学行为. 表面技术, 2017,46(9):209
    [65] Cai J S, Cao F H, Chang L R, et al. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film. Appl Surf Sci,2011,257(8):3804 doi: 10.1016/j.apsusc.2010.11.153
    [66] 彭继华, 过萍, 李文芳, 等. 电解质对镁合金微弧氧化表面膜组织与腐蚀性能的影响. 中国有色金属学报, 2007,17(11):1860 doi: 10.3321/j.issn:1004-0609.2007.11.023
    [67] 陈宏, 郝建民. AZ91D压铸镁合金微弧氧化膜层的显微硬度分析. 铸造技术, 2009,30(7):911
    [68] Alex J Z. Duane E B. Anodized coatings for magnesium alloys. Met Finish,1994,92(3):39
    [69] 王志虎, 张菊梅, 白力静, 等. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响. 材料研究学报, 2020,3:183 doi: 10.11901/1005.3093.2019.430
    [70] Guo H F, An M Z, Huo H B, et al. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Appl Surf Sci,2006,252:7911 doi: 10.1016/j.apsusc.2005.09.067
    [71] Khaselev O, Weiss D, Yahalom J. Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking. Corros Sci,2001,43:l295
    [72] Wu D, Liu X, Lu K, et al. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the micro-arc oxidation coatings formed on AZ91D magnesium alloy surface. Appl Surf Sci,2009,255(16):7115 doi: 10.1016/j.apsusc.2009.02.087
    [73] Shi X T, Zhu Y Y, Zhang S F, et al. Characteristics of selenium-containing coatings on WE43 magnesium alloy by micro-arc oxidation. Mater Lett,2020,261(2):126944
    [74] Nashrah N, Kamil M P, Yoon D K, et al. Formation mechanism of oxide layer on AZ31 Mg alloy subjected to micro-arc oxidation considering surface roughness. Appl Surf Sci,2019,497(12):143772
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2240
  • HTML全文浏览量:  1522
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 刊出日期:  2021-07-29

目录

    /

    返回文章
    返回