留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫金属的传热特性及其在暖通行业中的应用探索

王硕 邵雪 姜国伟 韩滨 徐懿微 梁博

王硕, 邵雪, 姜国伟, 韩滨, 徐懿微, 梁博. 泡沫金属的传热特性及其在暖通行业中的应用探索[J]. 金属世界, 2022 (6): 6-11. doi: 10.3969/j.issn.1000-6826.2022.06.0101
引用本文: 王硕, 邵雪, 姜国伟, 韩滨, 徐懿微, 梁博. 泡沫金属的传热特性及其在暖通行业中的应用探索[J]. 金属世界, 2022 (6): 6-11. doi: 10.3969/j.issn.1000-6826.2022.06.0101
Shuo WANG, Xue SHAO, Guo-wei JIANG, Bin HAN, Yi-wei XU, Bo LIANG. Heat Transfer Properties of Metal Foam and its Application in HVAC Industry[J]. Metal World, 2022 (6): 6-11. doi: 10.3969/j.issn.1000-6826.2022.06.0101
Citation: Shuo WANG, Xue SHAO, Guo-wei JIANG, Bin HAN, Yi-wei XU, Bo LIANG. Heat Transfer Properties of Metal Foam and its Application in HVAC Industry[J]. Metal World, 2022 (6): 6-11. doi: 10.3969/j.issn.1000-6826.2022.06.0101

泡沫金属的传热特性及其在暖通行业中的应用探索

doi: 10.3969/j.issn.1000-6826.2022.06.0101
基金项目: 辽宁省2021年度大学生创新创业训练计划资助项目(S202110154032)
详细信息
    作者简介:

    王硕(2000—),研究方向:建筑暖通。通信地址:121001辽宁省锦州市辽宁工业大学土木建筑工程学院;Email:1853907026@qq.com

    通讯作者:

    邵雪(1984—),女,博士,副教授,研究方向:低温传热研究。通信地址:121001辽宁省锦州市辽宁工业大学土木建筑工程学院;Email:shaoxue2006@aliyun.com

Heat Transfer Properties of Metal Foam and its Application in HVAC Industry

  • 摘要: 由于泡沫金属具有密度低、体积比大、导热性高等特点,在工程应用领域引起关注。在制热和制冷行业中,紧凑型换热器、太阳能光热设施和热能储存是3大核心方向。换热方面,介绍嵌入金属泡沫的换热器,阐述传热方面金属泡沫基本理论;总结泡沫金属的传热特性中压降、传热系数和性能评价的经验和理论模型;分析其在传热增强和压降增加之间存在权衡;总结了热传导模型。能量转换和储存方面,金属泡沫在太阳能转换设备中有较高的转换效率,包括太阳能集热器中低温利用和高温利用太阳能接收器,并整理了与储能材料结合使用的泡沫金属的主要应用。泡沫金属在热力学领域研究能够为研究者带来新的契机,拓展新的研究方向,推动整个能源领域(暖通)的发展。
  • 图  1  泡沫金属(开孔)示意图

    图  2  内嵌泡沫金属换热器

    图  3  平板太阳能集热器示意图:(a)直接吸收式太阳能集热器;(b)体积式太阳能集热器

    表  1  泡沫金属流体流动模型[4]

    流动模型公式
    Darcy$ \dfrac{{\Delta p}}{L} = \dfrac{\mu }{K}u $
    Darcy‒Brinkman$ \dfrac{{\Delta p}}{L} = \dfrac{\mu }{K}u + \dfrac{\mu }{\varepsilon }\left( {\dfrac{{{\partial ^2}{u_x}}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}{u_y}}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}{u_z}}}{{\partial {z^2}}}} \right) $
    Darcy‒Forchheimer$ \dfrac{{\Delta p}}{L} = \dfrac{\mu }{K}u - \dfrac{{{c_{\text{p}}}\rho }}{{\sqrt K }}{u^2} $
    Darcy‒Brinkman‒Forchheimer$ \dfrac{{\Delta p}}{L} = \dfrac{\mu }{K}u + \dfrac{\mu }{\varepsilon }{\nabla ^2}u - \dfrac{{{c_{\text{p}}}\rho }}{{\sqrt K }}{u^2} $
    下载: 导出CSV

    表  2  泡沫金属材料有效导热系数的5种基本理论边界模型

    传热模型结构示意图有效导热系数计算公式
    并联模型$ {k_{{\text{eff}}}} = {v_1}{k_1} + {v_2}{k_2} $
    Maxwell‒Eucken1$ {k_{{\text{eff}}}} = \dfrac{{{v_1}{k_1} + {v_2}{k_2}\dfrac{{3{k_1}}}{{2{k_1} + {k_2}}}}}{{{v_1} + {v_2}\dfrac{{3{k_1}}}{{2{k_1} + {k_2}}}}} $
    等效介质理论模型$ {v_1}\dfrac{{{k_1} - {k_{{\text{eff}}}}}}{{{k_1} + 2{k_{{\text{eff}}}}}} + {v_2}\dfrac{{{k_2} - {k_{{\text{eff}}}}}}{{{k_2} + 2{k_{{\text{eff}}}}}} = 0 $
    Maxwell‒Eucken2$ {k_{{\text{eff}}}} = \dfrac{{{v_1}{k_1} + {v_1}{k_1}\dfrac{{3{k_1}}}{{2{k_1} + {k_2}}}}}{{{v_2} + {v_1}\dfrac{{3{k_2}}}{{2{k_2} + {k_1}}}}} $
    串联模型$ {k_{{\text{eff}}}} = \dfrac{1}{{\dfrac{{{v_1}}}{{{k_1}}} + \dfrac{{{v_2}}}{{{k_2}}}}} $
    下载: 导出CSV

    表  3  换热器中泡沫金属与蓄热材料叠加使用应用实例

    文献形状相变材料相变材料潜热/(J/g)研究方法泡沫金属材料结论
    [13]矩形石蜡184实验法不同材质的泡沫金属可使传热速率增加到原有的两倍或者更大
    [14]圆柱形二十烷246实验法加入相变材料导热系数从0.423 W∙m−1 ∙K−1提升到3.06W∙m−1 ∙K−1
    [15]平板形石蜡224Gibson‒Ashby模型金属泡沫的加入可以提高纯PCM的固-液相变速率
    [16]矩形石蜡181实验法+ Gibson‒Ashby模型与纯相变材料相比,泡沫金属在 PCM 固相区的传热具有显著影响。在熔化起始时自然对流可以改善传热性能,降低壁面和PCM 之间的温差。在两相区和纯液相区中,金属泡沫的加入可使总传热速率提高3-10 倍
    [17]矩形石蜡181Gibson‒Ashby模型大上层小的复合相变材料明显比孔隙率分布为下层小上层大的材料传热效果好
    [18]圆柱形石蜡实验法加入泡沫金属不仅能提高蓄热过程中的相变材料的温度均匀性,还可以大大缩短了充热时间。
    [19]矩形石蜡181Gibson‒Ashby模型泡沫金属铜的加入,提高了石蜡的蓄热性能,缩短了石蜡相变的时间,可缓解自然对流温度不均不熔化现象
    [20]矩形石蜡120Boltzmann模型泡沫金属铜材料具有较高的导热系数和较大的孔隙率
    [21]矩形石蜡180数值计算梯度泡沫金属所构成的复合相变材料,可以显著地缩短相变储热单元的充热和放热时间
    [22]壳管式石蜡181Brinkman-extended Darcy模型泡沫金属可加强传热,但流体的压降也随之增大
    [23]矩形石蜡102.1Boltzmann模型导热性能与泡沫金属的孔密度有着明显关系,孔密度的增加会在一定程度上削弱蓄热单元内的自然对流作用
    [24]壳管式石蜡117Gibson‒Ashby模型研究了金属骨架结构不规则排列内嵌石蜡对有效导热系数的影响
    [25]壳管式Brinkman-extended Darcy 模型壳管式换热器传热面积较小,与其他换热器比较,其热熔化速率降低,镶嵌在石墨基体中的 PCM 壳管式换热器具有更好的应用前景
    [26]矩形硝酸钠178Gibson‒Ashby模型翅片对竖直管壳式蓄能单元传热性能的影响关系可优化;提出在相变材料侧增加翅片可以强化传热
    [27]壳管束式有机物A164249.7Brinkman-extended Darcy 模型不锈钢316LPCM潜热越大,蓄热越好,温度分布约均匀
    [28]矩形石蜡136.4实验法以导热为主的实验,金属铜+石蜡内部温度均匀,没有温度分层
    [29]矩形石蜡170.4Gibson‒Ashby模型装有径向梯度孔隙率铜泡沫的竖直管壳式换热器与均质铜泡沫相比,总熔化时间减少了37.6%
    [30]圆柱形肉豆蔻醇218.4实验法铜+镍在相变过程中与石蜡相变材料一定差别,潜热越大储热时间越长
    [31]矩形石蜡200实验法+Gibson‒Ashby模型复合相变材料的熔化速率和温度分布大大优于纯石蜡
    [32]矩形335实验法+Gibson‒Ashby模型铝+铜+镍与空气相比,对泡沫金属中的自然对流使用泡沫后的自然对流对水提高了4倍
    下载: 导出CSV
  • [1] Sosnick B. Process for making foamlike mass of metal: US48620943. 1948-01-40
    [2] Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams. J Heat Transfer,1999,121(2):466 doi: 10.1115/1.2826001
    [3] Calmidi V V, Mahajan R L. Forced convection in high porosity metal foams. J Heat Transfer,2000,122(3):557 doi: 10.1115/1.1287793
    [4] 刘培生. 泡沫金属设计指南. 北京: 冶金工业出版社, 2006
    [5] Dai Z, Nawaz K, Park Y, et al. A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications. Heat Transfer Eng,2011,33(1):21
    [6] Ejlali A, Ejlali A, Hooman K, et al. Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems. Int Commun Heat Mass Transfer,2009,36(7):674 doi: 10.1016/j.icheatmasstransfer.2009.03.001
    [7] 王晓鲁, 姜培学, 单彧垚. 泡沫金属与板翅结构强化换热研究. 工程热物理学报, 2008,29(1):121 doi: 10.3321/j.issn:0253-231X.2008.01.037
    [8] Odabaee M, Hooman K. Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl Therm Eng,2012,36:456 doi: 10.1016/j.applthermaleng.2011.10.063
    [9] Liu S, Zhang B M. Experimental research on heat transfer in a novel multi-functional structure. J Astronaut,2010,31(6):1656
    [10] James M, Cristina C. Testing of a porous ceramic absorber for a volumetric air receiver. Sol Energy Mater,1991,24(2):172
    [11] Bernhard D, Robert P, Peter R, et al. Solar collector has a porous ceramic absorber body: DE19740644, 1999–03–25
    [12] Zaversky F, Aldaz L, Sánchez M, et al. Numerical and experimental evaluation and optimization of ceramic foam as solar absorber-single-layer vs multi-layer configurations. Appl Energy,2018,210:351 doi: 10.1016/j.apenergy.2017.11.003
    [13] Zhou D, Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng,2011,31(5):970 doi: 10.1016/j.applthermaleng.2010.11.022
    [14] Siahpush A, O’Brien J, Crepeau J. Phase change heat transfer enhancement using copper porous foam. J Heat Transfer,2008,130(8):082301 doi: 10.1115/1.2928010
    [15] Chen Z, Gao D, Shi J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Tran,2014,72:646 doi: 10.1016/j.ijheatmasstransfer.2014.01.003
    [16] Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy,2010,84(8):1402 doi: 10.1016/j.solener.2010.04.022
    [17] Tian H Q, Du L C, Wei X L, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Appl Energy,2017,204:525 doi: 10.1016/j.apenergy.2017.07.027
    [18] Cui H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam. Appl Therma Eng,2012,39:26 doi: 10.1016/j.applthermaleng.2012.01.037
    [19] 陈华, 柳秀丽, 杨亚星, 等. 泡沫金属铜/石蜡相变蓄热过程的数值模拟. 化工学报, 2019,70(S1):86
    [20] Chen M J, He Y R, Ye Qin, et al. Solar thermal conversion and thermal energy storage of CuO/paraffin phase change composites. Int J Heat Mass Tran,2019,130:1133 doi: 10.1016/j.ijheatmasstransfer.2018.11.026
    [21] 万倩, 何露茜, 何正斌, 等. 泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律. 储能科学与技术, 2020,9(4):7 doi: 10.19799/j.cnki.2095-4239.2019.0280
    [22] Lu W, Zhao C Y, Tassou S A. Thermal analysis on metal-foam filled heat exchangers part i: metal-foam filled pipes. Int J Heat Mass Tran,2006,49(15/16):2751
    [23] Tao Y, Liu Y, He Y. Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit. Int J Heat Mass Tran,2017,115:99 doi: 10.1016/j.ijheatmasstransfer.2017.07.098
    [24] Medrano M, Gil A, Martorell I, et al. State of the art on high-temperature thermal energy storage for power generation: part 2 case studies. Renew Sust Energ Rev,2010,14(1):56 doi: 10.1016/j.rser.2009.07.036
    [25] Mesalhy O, Lafdi K, Elgafy A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energ Convers Manage,2005,46(6):847 doi: 10.1016/j.enconman.2004.06.010
    [26] Yang X, Lu Z, Bai Q, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Appl energ,2017,202:558 doi: 10.1016/j.apenergy.2017.05.007
    [27] Kumar N, Banerjee D, Jr Chavez R. Exploring additives for improving the reliability of zinc nitrate hexahydrate as a phase change material (PCM). J Energy Storage,2018,20:153 doi: 10.1016/j.est.2018.09.005
    [28] 杨磊, 张小松. 多熔点相变材料堆积蓄热床蓄热性能分析. 化工学报, 2012,63(4):1032 doi: 10.3969/j.issn.0438-1157.2012.04.006
    [29] Wang G, Wei G, Xu C, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals. Appl Therm Eng,2019,147:464 doi: 10.1016/j.applthermaleng.2018.10.106
    [30] Huang X, Wu G, Lü Z, et al. Electrical conductivity of open-cell Fe–Ni alloy foams. J alloy compd,2009,479(1):898
    [31] Zhang P, Meng Z N, Zhu H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energ,2017,185:1971 doi: 10.1016/j.apenergy.2015.10.075
    [32] Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon. 2009, 47 (1): 145
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1406
  • HTML全文浏览量:  101
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回