留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强抗氢脆钢的设计与工程化实践

石荣建 杜智煜 庞晓露

石荣建, 杜智煜, 庞晓露. 高强抗氢脆钢的设计与工程化实践[J]. 金属世界, 2023 (5): 7-13. doi: 10.3969/j.issn.1000-6826.2023.09.0702
引用本文: 石荣建, 杜智煜, 庞晓露. 高强抗氢脆钢的设计与工程化实践[J]. 金属世界, 2023 (5): 7-13. doi: 10.3969/j.issn.1000-6826.2023.09.0702
Rongjian SHI, Zhiyu DU, Xiaolu PANG. Design and Engineering Practices of High-Strength Hydrogen Embrittlement-Resistant Steel[J]. Metal World, 2023 (5): 7-13. doi: 10.3969/j.issn.1000-6826.2023.09.0702
Citation: Rongjian SHI, Zhiyu DU, Xiaolu PANG. Design and Engineering Practices of High-Strength Hydrogen Embrittlement-Resistant Steel[J]. Metal World, 2023 (5): 7-13. doi: 10.3969/j.issn.1000-6826.2023.09.0702

高强抗氢脆钢的设计与工程化实践

doi: 10.3969/j.issn.1000-6826.2023.09.0702
详细信息
    作者简介:

    石荣建(1993—),男,山东省济南市人,北京科技大学材料科学与工程学院副教授,主要研究方向:氢脆与腐蚀防护。通信地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院;E-mail:rongjianshi@ustb.edu.cn

    杜智煜(1999—),女,北京科技大学材料科学与工程学院研究生,主要研究方向:氢脆与腐蚀防护。通信地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院;E-mail:m202210286@xs.ustb.edu.cn

    庞晓露(1981—),男,安徽省阜阳市人,北京科技大学材料科学与工程学院教授,主要研究方向:氢脆与腐蚀防护、表面与界面。通信地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院;E-mail:pangxl@mater.ustb.edu.cn

Design and Engineering Practices of High-Strength Hydrogen Embrittlement-Resistant Steel

  • 摘要: 在碳达峰和碳中和的时代背景下,新型钢铁材料的高强韧化及氢的安全利用迫切需要开发抗氢脆性能优异的高强钢。金属材料的强度、抗氢脆性能难以协同提升是一个交叉的科学与工程难题,开发高强度、高抗氢脆性能的高强韧钢,对氢能安全利用以及实现钢铁工业碳中和目标具有重要的理论指导和应用价值。
  • 图  1  氢脆敏感性指数(IHE)和断裂模式随抗拉强度(σs)变化关系[57]:(a) 沿晶断裂,IHE=100%,σs≈2000 MPa;(b) 沿晶‒准解理断裂,IHE=79%,σs≈1200 MPa;(c) 准解理断裂,IHE=34%,σs≈900 MPa

    图  2  主要方案路线图

    图  3  高强度钢中氢脆性与深氢陷阱之间的相关性:(a)未经回火处理的钢材,不含NbC纳米析出物;(b)经回火处理的钢材,具有均匀分布的致密NbC纳米析出物;(c)经回火处理的钢材,含有一些变粗的NbC纳米析出物;(d) NbC/α-Fe半共格界面中深氢陷阱的示意图[20]

    图  4  对含有NbC的充氘(D)铁素体样品的3DAP分析:(a)完整的重建原子图,显示了质荷比与D、C和Nb相匹配的原子;(b)描述图(c–f)数据的示意图,(c–d)通过顶部(NbC#1)和底部(NbC#2)沉淀物中心的沿Y轴5 nm厚切片,显示碳、铌和氘原子;(e–f)通过NbC#1和NbC#2中心的一维Z轴成分分布,从一个直径为7 nm的区域提取,每个条带宽度为0.5 nm,且无重叠[21]

    图  5  1T(a)和2T(b)充氢和未充氢样品的工程应力–应变曲线,1T(c)和2T(d)充氢和未充氢样品加工硬化率‒真应变曲线[15]

    图  6  充氘的Al‒Zn‒Mg‒Cu样品在峰值时效条件下的第二相3DAP分析图[23]:(a、c)为Al3Zr弥散相;(b、d)为S相(原子图和成分抛面分别沿箭头呈现)

    表  1  高强度弹簧钢成分(质量分数) %

    编号CSiMnCrVTi
    1T0.420.300.770.630.090.02
    2T0.380.300.771.040.140.02
    下载: 导出CSV
  • [1] 毛新平. 话说钢铁. 金属世界,2023(3):2
    [2] 上官方钦,刘正东,殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究. 中国冶金,2021,31(9):15 doi: 10.13228/j.boyuan.issn1006-9356.20210393
    [3] 褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀: 基础部分. 北京: 科学出版社, 2013
    [4] 褚武扬. 氢损伤和滞后断裂. 北京: 冶金工业出版社, 1988
    [5] Guedes D, Malheiros C L, Oudriss A, et al. The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Mater, 2020, 186: 133 doi: 10.1016/j.actamat.2019.12.045
    [6] Venezuela J, Blanch J, Zulkiply A, et al. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corros Sci, 2018, 135: 120 doi: 10.1016/j.corsci.2018.02.037
    [7] Wang G, Yan Y, Li J X, et al. Microstructure effect on hydrogen-induced cracking in TM210 maraging steel. Mat Sci Eng A, 2013, 586: 142 doi: 10.1016/j.msea.2013.07.097
    [8] 陈伟健. 超高强度热成形钢组织性能调控及氢致延迟开裂行为[学位论文]. 北京科技大学, 2023
    [9] Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: Art No. 108345
    [10] Hwang H K, Kim S J. Investigation on indentation, scratch, friction characteristics with hydrogen embrittlement of plasma ion nitrided Al alloy for hydrogen valve of fuel cell electric vehicle. Jpn J Appl Phys, 2023, 62: Art No. SN1008
    [11] 贾征. 几种镁合金与铝合金熔休的除氢工艺研究[学位论文]. 东北大学, 2013
    [12] 钟振前,田志凌,杨春. EBSD技术在研究高强马氏体不锈钢氢脆机理中的应用. 材料热处理学报,2015,36(2):77 doi: 10.13289/j.issn.1009-6264.2015.02.015
    [13] 付豪. TWIP钢的界面特征对氢致开裂行为的影响[学位论文]. 北京科技大学, 2021
    [14] Tu Y Q, Liu S Y, Shi R J, et al. Effects of the cementite morphology on the hydrogen trapping behavior in the pipeline steel. Anti-Corros Method M, 2023, 70(4): 141 doi: 10.1108/ACMM-02-2023-2761
    [15] Shi R J, Wang Y L, Lu S P, et al. Enhancing the hydrogen embrittlement resistance with cementite/VC multiple precipitates in high-strength steel. Mat Sci Eng A, 2023, 874: Art No. 145084
    [16] Lin C, Ma Z X, Shi R J, et al. Comprehensive effect of hydrostatic compressive stress in retained austenite on mechanical properties and hydrogen embrittlement of martensitic steels. Int J Hydrogen Energ, 2020, 45(41): 22102 doi: 10.1016/j.ijhydene.2020.06.012
    [17] Ali S. Hydrogen embrittlement and hydrogen trapping behaviour in advanced high strength steels. Mater Sci Forum, 2021, 1016: 1344 doi: 10.4028/www.scientific.net/MSF.1016.1344
    [18] Tan L H, Li D D, Yan L C, et al. A novel heat treatment for improving the hydrogen embrittlement resistance of a precipitation-hardened martensitic stainless steel. Corros Sci, 2022, 206: Art No. 110530
    [19] Yan Q, Yan L C, Pang X L, et al. Hydrogen trapping and hydrogen embrittlement in 15-5PH stainless steel. Corros Sci, 2022, 205: Art No. 110416
    [20] Shi R J, Ma Y, Wang Z D, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces. Acta Mater, 2020, 200: 686 doi: 10.1016/j.actamat.2020.09.031
    [21] Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science, 2020, 367(6474): 171 doi: 10.1126/science.aaz0122
    [22] Lee J, Lee T, Kwon J Y, et al. Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel. Met Mater Int, 2016, 22(3): 364 doi: 10.1007/s12540-016-5631-7
    [23] Zhao H, Poulami C, Dirk P, et al. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature, 2022, 602(7897): 437 doi: 10.1038/s41586-021-04343-z
    [24] Zdenek K, Michaela R, Ondrej E, et al. High susceptibility of 3D-printed Ti–6Al–4V alloy to hydrogen trapping and embrittlement. Mater Lett, 2021, 301: Art No. 130334
    [25] 庞晓露,王艳林,赵海,等. 高强韧钢中纳米相深氢陷阱的基础研究与工程应用. 中国冶金,2023,33(6):144
    [26] 崔月瑶. 纯氢长输氢管线钢材料与抗氢脆技术的研究. 冶金与材料,2023,43(1):50 doi: 10.3969/j.issn.1674-5183.2023.01.018
    [27] 路洪洲,马鸣图,郭爱民. 汽车EVI技术进展. 汽车工艺与材料,2022(8):1 doi: 10.19710/J.cnki.1003-8817.20220150
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1206
  • HTML全文浏览量:  62
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2023-09-25

目录

    /

    返回文章
    返回