First-principles Study of Diffusion Behavior of Carbon in Surface and the Internal of the α-Fe–Cr (110)
-
摘要: 碳钢–奥氏体不锈钢异种钢焊接接头界面区域的碳偏聚现象,严重降低了焊接件的性能和使用寿命,本文基于第一性原理赝势平面波方法从原子层次探讨了C(碳)原子在α-Fe (110)和α-Fe–Cr(110)表面结构体系中占位及偏聚行为。赝势平面波方法是基于密度泛函理论即第一性原理计算不同体系的基态属性,平面波具有标准正交化和能量单一性的特点,引入赝势可以保证计算中用较少的平面波数就可以获得较为可靠的结果。计算结果表明,C原子固溶于α-Fe (110)、α-Fe–Cr (110)表面结构体系中,均形成稳定的结构;α-Fe–Cr–C (110)体系中随着Cr含量的增加有利于减缓C在表界面的偏聚;C原子更易偏聚于α-Fe (110)表界面,这一特点促使C更多的偏聚于碳钢–奥氏体钢界面的碳钢一侧。α-Fe–Cr (110)结构表面的稳定性逐渐增强,形成能力逐渐增大。
-
碳钢–奥氏体不锈钢异种钢焊接如今已广泛应用于各行各业中,特别是在石油运输、海洋勘探等具有腐蚀介质的环境中发挥着重要的作用。由于碳钢和奥氏体不锈钢在热膨胀系数、碳及合金元素含量方面存在较大差别,造成碳钢–奥氏体不锈钢异种钢接头组织和力学性能低于母材,接头处微观组织常常发生元素的偏聚、脆性相的形成以及残余应力的增大等现象,其中接头区域碳偏聚是常见的一种现象[1−2]。通常异种钢焊接过程中,在熔合区各类元素的分布表面上看主要由其浓度差反映,即呈现出梯度分布。然而对于碳钢–奥氏体不锈钢异种钢接头,Pavlovsky[3]等研究发现C元素在碳钢侧熔合区表面发生了偏聚,即形成了一个增碳层,临近区域则出现了贫碳区。进一步针对增、贫碳层研究表明,不锈钢中的Cr元素在焊接过程中向碳钢侧发生了一定的扩散[3−5],增碳层通常含有大量细小板条马氏体、孪晶马氏体、贝氏体和碳的铬化物等混合物,碳元素的偏聚与奥氏体不锈钢中Cr元素扩散进入碳钢熔合区表面与C元素形成稳定的碳化物相关[6]。同时这一增碳层的宽度还与接头高温、长期运行时间密切相关,最终影响到焊接构件的使用寿命。目前异种钢焊接接头处碳迁移微观过程及形成机制,在原子层面还难以解释清楚。
近几年第一性原理的计算方法为金属材料间隙原子扩散机制的研究提供了条件,如使用第一性原理方法探究Cr对Fe–Cr合金、Fe–Cr–Ni合金的影响[7−13],腐蚀介质中Cr元素对合金的影响[14−16]。本文从微观机理研究α-Fe (110)和α-Fe–Cr (110)合金表面C原子的偏聚,在指导实际工程应用中起着举足轻重的作用,为以后在原子和分子角度探究C原子扩散的微观机理提供一个参考。
1. 计算方法和模型
第一性原理计算采用CASTEP[17]软件,运用密度泛函理论(DFT)[18−20],结合局域密度近似(LDA)[21]的CA–PZ交换–关联的方法,对α-Fe表面结构中离子和电子的相互作用采用超软赝势(USPP)[22]方法进行描述,其中平面波基组截断能为290 eV,布里渊区积分计算[23]采用Monkhorst–Pack方案,k点网格为4×4×1,迭代过程中,自洽场(SCF)收敛精度为2.0×10–5 eV/atom,原子间最大相互作用力为0.005 eV/nm,原子最大位移变化0.0002 nm。
α-Fe (110)、α-Fe–Cr (110)是基于α-Fe块体弛豫优化后得到的表面,本表面模型中根据Fe (110)层结构特点选取6层进行计算。图1是α-Fe (110)、α-Fe–Cr (110)表面超胞的示意图,为了避免平面重叠引起的相互作用,真空层的厚度选取为1 nm。图1(a)为C吸附于α-Fe (110)和Cr质量分数为4.17%的α-Fe–Cr (110)表层的结构模型,图1(b)为C固溶于α-Fe (110)和Cr质量分数为8.33%的α-Fe–Cr (110)次表层(1~2间隙)的结构模型,图1(c)为C固溶于α-Fe (110)和Cr质量分数为12.5%的α-Fe–Cr (110)距表面2~3层间隙的结构模型,图1(d)为C固溶于α-Fe (110)和Cr质量分数为16.67%的α-Fe–Cr (110)距表面3~4层间隙的结构模型。
为了确保计算的可靠性,先对α-Fe块体进行了结构优化,计算的α-Fe块体的晶格参数a和体积v分别为0.2866 nm和0.023551 nm3,与理论值0.2866 nm和0.023541 nm3相比,计算值与理论数值非常接近,因此本计算方法数据可信。
2. 结果和讨论
2.1 表面结构的稳定性
形成热是原子由单质状态形成化合物时释放的能量,常用于表征化合物形成的难易程度,当形成热为负值时,其绝对值越大,表示该物质越易形成[24−26]。具体到α-Fe–C (110)、α-Fe–Cr (110)和α- Fe–Cr–C (110)表面结构的形成热,可用式(1)计算[27]。
H=1a+b+c(Etot−aECsolid−bECrsolid−cEFesolid) (1) 式中,H为形成热;a、b、c分别为α-Fe固溶体晶胞结构中C、Cr、Fe原子的原子个数;Etot为α-Fe固溶体晶胞结构优化后的总能量;ECsolid、ECrsolid、EFesolid分别为单个C、Cr、Fe原子在固态时的能量。在计算固态单原子能量ECsolid、ECrsolid、EFesolid时,采用与α-Fe固溶体晶胞总能量相同的计算条件,分别对C、Cr、Fe原子相应的单质能量进行计算,然后除以单质中总的原子个数后所得的能量,即C、Cr、Fe的固态单原子能量。
结合能是将自由原子结合为化合物所释放的能量,也就是把化合物分解成单个原子时外界所做的功。化合物的性能、结构稳定性与其结合能密切相关,当结合能为负值时,其绝对值越大,则化合物就越稳定[24,26−27]。α-Fe固溶体晶胞结构结合能的可用式(2)计算[28]:
Ecoh=1a+b+c(Etot−aECatom−bECratom−cEFeatom) (2) 式中,Ecoh为结合能,ECatom、ECratom、EFeatom分别为C、Cr、Fe孤立原子的偏聚能。
图2所示为碳原子位于α-Fe–C (110)表面结构不同位置时获得的结合能和形成热。结合能曲线来看,碳处于不同位置时,含碳α-Fe–C (110)表面结构的结合能均为负值,即均为稳定结构。具体来看C原子位于α-Fe–C (110)表面层时结合能的值最小,而处于2、3、4层间时,结合能的数值相近且均高于表面为主,表明碳固溶于α-Fe–C (110)表面结构体系中时,C位于表面时对应体系的结合能最小,为最稳定结构。形成热曲线来看,碳所处不同位置时,α-Fe–C (110)表面结构的形成热也均为负值,即碳易固溶于α-Fe–C (110)体系,具体来看C原子位于α-Fe–C (110)表面层时对应的形成热最小,碳更易于在α-Fe–C (110)表面形成。
图3为Cr含量变化对α-Fe–Cr (110)表面结构的形成热和结合能影响曲线。图3(a)结合能曲线可以看出,随着α-Fe–Cr (110)表面结构中Cr含量的增加,α-Fe–Cr (110)表面结构体系的结合能均为负值,即均为稳定结构。具体来看随着Cr含量的增加,α-Fe–Cr (110)体系的结合能数值没有明显的变化,即Cr固溶于α-Fe (110)体系对α-Fe–Cr (110)体系稳定性影响不大。图3(b)形成热曲线来看,Cr含量的增加,使α-Fe–Cr (110)表面结构体系的形成热均为负值,即Cr均可以固溶于α-Fe–Cr (110)体系。具体来看现有的Cr含量研究范围内,Cr含量越高越易于固溶于α-Fe–Cr (110)表面结构体系。
图4为C所处位置对不同Cr含量α-Fe–Cr–C (110)表面结构体系结合能和形成热影响曲线。C溶于不同Cr含量的α-Fe–Cr–C (110)表面结构体系后,结合能的值均为负值,即均为稳定结构。较α-Fe体系相比,Cr含量溶于α-Fe体系后,Cr明显会使α-Fe–Cr–C(110)表面结构体系的结合能数值降低,即提高C在α-Fe–Cr–C (110)体系中的稳定性,对比来看,C处于表面时的稳定性均高于处于次表面和内部位置的2、3、4层间。图4(b)为C处于不同位置时,不同Cr含量α-Fe–Cr–C (110)表面结构体系形成热变化曲线,可以看出Cr含量的增加对含C的α-Fe–Cr–C (110)表面结构体系形成热的影响特别明显,即Cr含量越高,C越有利于溶于α-Fe–Cr–C (110)体系,尤其C分布于α-Fe–Cr–C (110)表面层时的形成热最小,表明C更容易形成于高Cr的α-Fe–Cr表界面并形成稳定的结构。
2.2 碳在α-Fe–Cr(110)体系中偏聚行为
表面偏聚能是一个原子吸附于表面位置和溶于内部区域所引起的系统能量之差。针对α-Fe–Cr–C (110)体系来讲,碳在α-Fe–Cr–C (110)表面偏聚能可用式(3)表示[29]:
Eseg=E1−E4 (3) 式中E1和E4在α-Fe–C (110)表面分别代表C原子固溶于α-Fe–Cr–C (110)表层和第3~4层间隙的系统总能,在α-Fe–Cr (110)表面分别表示Cr原子取代表面第1层和第4层一个Fe原子的系统总能。Eseg为正说明C原子在表面时能量高,即C原子不易在表面发生偏聚,易于均匀分布于α-Fe–Cr–C (110)体系各个部位,Eseg为负说明C原子在表面时能量低,即C原子易在表面发生偏聚。
图5所示为Cr含量对C原子在α-Fe–Cr–C (110)表面吸附时获得的偏聚能,总体来看C原子固溶于α-Fe (110)、α-Fe–Cr (110)体系时,整个体系的偏聚能均为负值,即C原子均易于在α-Fe (110)、α-Fe–Cr (110)表界面发生聚积。具体到Cr元素的影响来看,α-Fe–Cr–C (110)体系中随着Cr含量的增加有利于减缓C在表界面的偏聚。通过式(3)计算得到,Cr原子在α-Fe–Cr (110)表面偏聚能为–0.613 eV,即Cr原子易于在α-Fe–Cr (110)表面发生聚积。
图6所示为C、Cr原子在碳钢/奥体钢界面偏聚模型,具体到碳钢/奥体钢界面,由于奥氏体钢中Cr含量很高,焊接过程中界面处一定会有一定量的Cr向铁素体中扩散,同时由于碳钢中C含量很高,焊接过程中界面处一定会有一定量的C向奥氏体区域扩散,即在接头界面的碳钢侧出现一个微小α-Fe–C/α-Fe–(Cr)–C界面区域。从以上计算来看,α-Fe–C/α-Fe–(Cr)–C界面靠近碳钢侧,C有向含Cr区域偏聚的倾向,由于Cr的影响,C的偏聚受到了阻碍,使得C更多的偏聚于碳钢/奥体钢界面的碳钢一侧,由于C的偏聚可使得界面结构更加稳定,因此最终在接头焊缝界面的α-Fe–C侧形成了一层高碳的区域。
3. 结论
(1)C原子固溶于α-Fe (110)、α-Fe–Cr (110)表面结构体系中,均形成稳定的结构,Cr溶于α-Fe–C (110)表面结构体系中,有利于提高C原子在α-Fe–Cr–C (110)体系中的稳定性。C原子处于α-Fe–Cr–C (110)表面时的稳定性均高于处于次表面和内部。
(2)C原子在α-Fe (110)表面的偏聚倾向高于含铬的α-Fe–Cr (110)表面结构,Cr含量的增加有利于减缓C在表面的偏聚,即C原子更易于偏聚于α-Fe(110)表面而不易扩散于含铬的α-Fe–Cr (110)结构体系中。
-
-
[1] Hajiannia I, Shamanian M, Kasiri M. Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding. Mater Design, 2013, 50: 566 DOI: 10.1016/j.matdes.2013.03.029
[2] Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater Des, 2014, 60: 678 DOI: 10.1016/j.matdes.2014.03.057
[3] Pavlovsky J, Million B, Cíha K, et al. Carbon redistribution between an austenitic cladding and a ferritic steel for pressure vessels of a nuclear reactor. Mat Sci Eng A, 1991, 149(1): 105 DOI: 10.1016/0921-5093(91)90791-K
[4] Mcpherson N A, Chi K, Mclean M S. Structure and properties of carbon steel to duplex stainless steel submerged arc welds. Mater Sci Technol, 2003, 19(2): 219 DOI: 10.1179/026708303225009643
[5] Srinivasan P B, Muthupandi V, Sivan V, et al. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel. J Mater Eng Perform, 2006, 15(6): 758 DOI: 10.1361/105994906X150902
[6] 卢金斌,王志新,陈建泰. 1Cr17Mn6Ni5N与Q235异种钢焊接接头组织分析. 焊接技术,2008(2):15 DOI: 10.3969/j.issn.1002-025X.2008.02.005 [7] Serikov V V, Kleinerman N M, Vershinin A V, et al. Formation of solid solutions of gallium in Fe–Cr and Fe–Co alloys: Mossbauer studies and first-principles calculations. J Alloy Compd, 2014, 614: 297 DOI: 10.1016/j.jallcom.2014.06.068
[8] Airiskallio E, Nurmi E, Väyrynen I J, et al. Magnetic origin of the chemical balance in alloyed Fe–Cr stainless steels: first-principles and ising model study. Comp Mater Sci, 2014, 92: 135 DOI: 10.1016/j.commatsci.2014.05.036
[9] Zhang Z P, Lei M K. The states of nitrogen atoms in the processing of Ni–Cr alloy surface nitriding modification. Appl Surf Sci, 2014, 301: 346 DOI: 10.1016/j.apsusc.2014.02.076
[10] Zhang Z P, Li P. Study on the trap site in Ni–Cr alloy by first principle approach. Vacuum, 2014, 101: 321 DOI: 10.1016/j.vacuum.2013.10.009
[11] Senninger O, Martínez E, Soisson F, et al. Atomistic simulations of the decomposition kinetics in Fe–Cr alloys: Influence of magnetism. Acta Mater, 2014, 73: 97 DOI: 10.1016/j.actamat.2014.03.019
[12] Terentyev D, Bonny G, Domain C, et al. Mechanisms of radiation strengthening in Fe–Cr alloys as revealed by atomistic studies. J Nucl Mater, 2013, 442(1/3): 470
[13] Gao Y, Lv Z Q, Sun S H, et al. First principles study on surface structure and stability of alloyed cementite doped with Cr. Mater Lett, 2013, 100: 170 DOI: 10.1016/j.matlet.2013.02.095
[14] He J, Luan Y, Guo H B, et al. The role of Cr and Si in affecting high-temperature oxidation behaviour of minor Dy doped NiAl alloys. Corros Sci, 2013, 77: 322 DOI: 10.1016/j.corsci.2013.08.020
[15] Liu W M, Zhou Q J, Li L S, et al. Effect of alloy element on corrosion behavior of the huge crude oil storage tank steel in seawater. J Alloy Compd, 2014, 598: 198 DOI: 10.1016/j.jallcom.2014.01.181
[16] Wang C, Chen J J, Li Y, et al. Magnetic properties, microstructure and corrosion behavior of Nd10Y1Fe85-xNb3.5Ti0.5Bx (x=14–22) and Nd10Y1Fe69Nb3.5M0.5B16 (M=Ti, Zr, Cr, Mo) bulk nanocrystalline magnets. J Alloy Compd, 2013, 555: 16
[17] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter, 2002, 14(11): 2717 DOI: 10.1088/0953-8984/14/11/301
[18] Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys rev lett, 1979, 43(20): 1494 DOI: 10.1103/PhysRevLett.43.1494
[19] Kresse G, Hafner J. Ab initio molecular dynamics of liquid metals. Phys Rev B, 1993, 47(1): 558 DOI: 10.1103/PhysRevB.47.558
[20] Laan G V D. Polaronic satellites in x-ray-absorption spectra. Phys Rev B, 1990, 41(17): 12366 DOI: 10.1103/PhysRevB.41.12366
[21] Hohenberg P, Kohn W. Inhomogneous electron gas. Phys Rev, 1964, 136(3B): 864 DOI: 10.1103/PhysRev.136.B864
[22] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41(11): 7892 DOI: 10.1103/PhysRevB.41.7892
[23] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13(12): 5188 DOI: 10.1103/PhysRevB.13.5188
[24] Wu M M, Wen L, Tang B Y, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy. J Alloy Compd, 2010, 506(1): 412 DOI: 10.1016/j.jallcom.2010.07.018
[25] Fu C L, Wang X D, Ye Y Y, et al. Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation. Intermetallics, 1999, 7(2): 179 DOI: 10.1016/S0966-9795(98)00018-1
[26] 陈律,彭平,李贵发,等. B2-RuAl点缺陷结构的第一原理计算. 稀有金属材料与工程,2006(7):1065 [27] Song Y, Guo Z X, Yang R, et al. First principles study of site substitution of ternary elements in NiAl. Acta Mater, 2001, 49(9): 1647 DOI: 10.1016/S1359-6454(01)00052-0
[28] Sahu B R. Electronic structure and bonding of ultralight LiMg. Mat Sci Eng B, 1997, 49(1): 74 DOI: 10.1016/S0921-5107(97)00068-8
[29] 梁婷,张国英,李丹,等. Ni–Cr–Al合金择优氧化及其影响机理的第一原理研究. 沈阳师范大学学报(自然科学版),2011,29(2):194