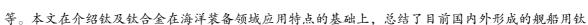

浅析钛及钛合金在海洋 装备上的应用


Brief Analysis of the Application of Titanium and Titanium Alloy in Marine Equipment

供稿|海敏娜, 黄帆, 王永梅/HAI Min-na, HUANG Fan, WANG Yong-mei

及钛合金体系和性能特征、分析了国内外钛及钛合金在海洋装备领域的应用现状及优势、展望了钛 材在海洋装备的应用前景, 以期对后续海洋工程装备设计选材提供参考, 从而大幅度加速推动钛材

在我国海洋装备领域的应用。

钛具有质轻、比强度高、抗冲击性高、耐海水 腐蚀性能优异、断裂韧性好、疲劳强度高、焊接性 能好、无磁、透声性好、耐冷热性优异、抗放射性、 减震抗噪等一系列优点[1-10],被誉为"海洋金属",是 一种理想的、具前景的海洋工程装备用结构材料。

钛在海洋工程装备领域应用非常广泛, 如船体 结构件、潜艇和深潜器的耐压壳体、管件、阀及附 件等,动力驱动装置中的推进器和推进器轴,冷凝 器、冷却器、换热器等,舰船声呐导流罩、螺旋桨 等[2-7]。但目前国内仍未见有关海洋工程装备用钛材 的选材手册的报道,未见有关完善的海洋工程装备 用钛及钛合金使用评价体系的报道, 这在很大程度 上制约了钛材在海洋工程装备上的推广使用。

本文在介绍钛及钛合金在海洋装备领域应用特

点的基础上,总结了目前国内外形成的舰船用钛及 钛合金体系和性能特征,论述了国内外钛及钛合金 在海洋装备领域的应用现状及优势, 展望了钛材在 海洋装备的应用前景,以期对后续海洋工程装备设 计选材提供参考,从而大幅度加速推动钛材在我国 海洋装备领域的应用。

海洋工程装备用钛

为确保海洋装备的战技性能和航行的绝对安全 可靠性,选择合适的装备材料至关重要。

钛及钛合金几乎具备海洋装备材料所需的全部 特性,即钛及钛合金的诸多优点。

物理特性

①质轻。钛密度为 4.5 g/cm³, 仅为钢的 57.7%,

作者单位: 宝鸡钛业股份有限公司, 陕西 宝鸡 721013

在舰船领域应用可减轻船体质量、增加载重、提高 航速;②热膨胀系数低,焊接应力小,从而使部件 焊接变形量小;③无磁性,在强磁场下也不会磁 化,并可防电磁干扰,使装磁引信的水雷或鱼雷失 效,避免磁性雷的攻击,从而提高水下潜艇的隐身 技术水平和反侦察能力;④导热率与热传递速率匹 配良好,是理想的热交换器材料;⑤透声性好,钛 材透声系数大于0.85,甚至高达0.98,是舰船声呐 导流罩最理想选材;⑥加工性良好,可通过多种加 工方式如铸造、轧制、锻造、挤压等生产铸件、板 材、丝材、型材、锻件、复杂的零部件等。

力学性能

钛及钛合金力学性能优异,其比强度高、塑性好,在 $-253\sim600$ ℃ 范围内,它的屈强比和比强度在海洋装备用金属材料中最高;冲击韧性良好,在 $-60\sim20$ ℃ 范围内,无明显韧-脆转变点;断裂韧性较高,在 $80\sim110$ MPa·m^{1/2} 之间^[2-3]。疲劳强度高,钛材低应力高周疲劳均在 10^7 周次以上。

腐蚀性能

钛在海洋环境介质中具有优异耐腐蚀性能。由 于钛和氧亲和力极高,在空气或氧介质中,钛材表 面极易快速形成一层薄、致密、坚固的氧化膜。钛 的氧化膜具有很强的自愈性,当氧化膜受到破坏或 划伤后,也会很快自愈或再生,形成新的氧化膜。 这层氧化膜可使钛材几乎不被自然海水腐蚀。

国内外舰船用钛材体系

钛材是一种优良的舰船材料,得到了各国海军 和造船业的青睐。近五十年来,俄罗斯、美国、中 国和日本等先后都建立了适用于自己的舰船用钛及 钛合金体系。

国外舰船用钛材体系

俄罗斯、美国是最早研究舰船用钛及钛合金的国家,并各自形成舰船用钛及钛合金体系,日本相对较晚,舰船用钛材体系较简单。俄、美、日各国常见的舰船用钛及钛合金牌号及屈服强度 $\sigma_{0.2}$ 按低、中、高强度级别划分见表 $1^{[1-3,6-10]}$ 。

俄罗斯舰船用钛及钛合金研究及应用水平居世界前列,是最早拥有专用舰船用钛合金体系的国家,如船体钛合金ΠT-1M,船机用钛合金ΠT-7M、3M、37,动力工程用钛合金ΠT-3B、40、5B、23a等。几十年来,俄罗斯在核潜艇、常规潜艇、水面舰艇、航空母舰、深潜器等舰船领域都大量采用了钛材。

表 1 俄罗斯、美国、日本常见舰船用钛及钛合金牌号及屈服强度[1-3,6-10]

国家	低强钛合金				中强钛合金		高强钛合金		
国豕	牌号	合金成分	$\sigma_{0.2}/\mathrm{MPa}$	牌号	合金成分	$\sigma_{0.2}/\mathrm{MPa}$	牌号	合金成分	$\sigma_{0.2}$ /MPa
	ПТ-1М	_	≥390	ПТ-3В	Ti-4Al-2V	≥590	BT6	Ti-6Al-4V	≥850
俄罗斯	TL3	Ti-3.5Al-0.4V	≥440	37	_	≥690	BT8	Ti-6.5Al-3.3Mo-0.3Si	≥900
以少別	ПТ-7М	Ti-2Al-2.5Zr	≥490	5B	_	≥690	BT14	Ti-5Al-3Mo-1V	≥900
	TL5	Ti-3.5Al-2V	≥490	_	_	_	23a	_	≥1050
	Gr1	Cp-Ti	≥165	Gr.32	Ti-5Al-1Zr-1Sn- 1V-0.8Mo-0.1Si	≥586	Gr.23	Ti-6Al-4VELI	≥795
美国	Gr2	Cp-Ti	≥275	_	Ti-6Al-2Nb-1Ta-0.8Mo	≥655	Gr.5	Ti-6Al-4V	≥820
	Gr12	Ti-0.3Mo-0.8Ni	≥345	_	_	_	Ti38644(βc)	Ti-3Al-8V-6Cr-4Mo-4Zr	≥1100
	Gr9	Ti-3Al-2.5V	≥485	_	_	_	_	_	_
日本	CP-Ti	_	≥280	_	_	_	SAT-64	Ti-6Al-4V	≥830
口华	_	_	_	_	_	_	SAT-64ELI	Ti-6Al-4VELI	≥795

美国海军自 1963 年开始对舰船用钛材进行大量 的工程应用研究,主要的船用钛及钛合金有纯钛、 Ti-6Al-4V、Ti-6Al-4VELI、Ti-0.3Mo-0.8Ni、Ti-3Al-2.5V、Ti-5Al-1Zr-1Sn-1V-0.8Mo-0.1Si、Ti-6Al-2Nb-

1Ta-0.8Mo、Ti-3Al-8V-6Cr-4Mo-4Zr 等, 现已成功将钛材应用于各种水面舰艇、动力潜艇、民船等。

日本的船用钛及钛合金主要有纯钛、Ti-6Al-4V、Ti-6Al-4VELI、集中应用于深潜器耐压壳体、

民用渔船、游船等。

国内舰船用钛材体系

国内舰船用钛材的研究始于 1962 年, 五十多年 来,我国从研发到应用已逐渐形成了较完整的舰船 用钛及钛合金体系^[1-3,6-9], 其屈服强度在 320~1130 MPa之间。业界通常按材料屈服强度大小对其分 类,即屈服强度在 500 MPa 以下为低强钛合金, 500~790 MPa 为中强钛合金, 高于 790 MPa 为高强 钛合金。上述强度级别材料基本可满足国内舰船、 潜艇、深潜器及深海空间站用结构材料的指标要 求。现阶段我国已制定了舰船用钛及钛合金板材、 棒材、锻件、无缝管材及铸件的相关规范, 具体舰 船用钛及钛合金体系、性能、应用及规范标准号见 表 2。

与俄罗斯、美国相比,中国舰船用钛及钛合金 体系还不够完善,且应用数据较少,无准确、高效 的舰船用钛材的评价体系。

钛材在海洋装备上的应用现状及优势

钛材是海洋环境中最理想的材料, 使用钛材可 使海军舰船及装备大大提高战斗力、降低维护成 本、延长使用寿命、提高隐蔽性[1,10]。俄、美、中国 海军已将钛材广泛应用于深潜器、水下潜艇、水面 舰艇、舰船等装备的耐压壳体、海水管路系统、上 层建筑及其他部件等[9-11]。

耐压壳体

国内外选用钛材作为耐压壳体的实例较多,主 要用于深潜器载人球壳、潜艇壳体[11],具体典型应 用所选用钛材的牌号及拉伸性能见表 3。

国内外深潜器载人球壳选用钛材牌号主要有 Ti-6Al-4V、Ti-6Al-4VELI(对应国内牌号 TC4、TC4ELI)。 很多深潜器载人球壳前期选用钢材, 但后期都采 用钛材替代,既可以减轻重量,增加下潜深度, 又可以提高使用寿命。例如:①美国 Alvin 深潜 器, 1964年建造时采用的是 HY100 高强钢 (板厚 33.8 mm), 下潜深度为 2000 m, 1973 年改建时将耐 压壳体换成钛合金 (板厚 49 mm), 下潜深度增加到 3600 m, 其辅助箱及高压气器也采用 Ti-6Al-4VELI: ②日本的"深海 2000"载人球壳采用钢材制 备,后续在建造"深海 6500"时选用钛材制备载人球 壳以增加下潜深度。

在潜艇耐压壳体应用方面,俄罗斯最早选用钛 材,是目前世界上使用钛材制造耐压壳体技术最先 进最成熟的国家, 其全钛核潜艇制造选用的惟一的 钛材牌号为 IIT-3B 钛合金 (对应国内牌号 TA17)。近 年来,国内在建造潜艇时也更青睐于选用钛材,牌 号主要集中于 TA17、TC4、TC4ELI、TC11、纯 钛等。

除此之外,目前许多国家都正在建造大深度载 人潜水器和大深度全钛武器装备。国内建造的"奋斗 者"号全海深载人潜水器已于 2020年 11月 10日成 功挑战全球海洋最深处——马里亚纳海沟,深度达 10909 m, 实现了中国人的深海梦, 该深潜器的载人 球壳材料为高强高韧损伤容限型钛合金, 由宝钛股 份制造;国内已开始建造全钛的大深度装备。

海水管路系统

海水管路系统复杂、通径规格多, 所选材料要 求具有耐海水腐蚀、强度高、疲劳性能好等特点, 钛材均可满足,采用钛合金制造的管道较传统材料 (碳钢、不锈钢、铜合金) 优势显著[1,9-10]。

- (1)提高服役寿命,与舰船本体同寿命。俄罗斯 对比研究了传统材料和钛材制造的管道系统服役寿 命。结果表明,钛材与舰船同寿命,只需投入一 次,且在使用过程中仅需简单维护即可;传统材料 服役期限约 2~10 a, 服役期内必须定期维修, 甚至 更换,尤其是在高速推动环境作用下,各种接头均 会产生局部腐蚀。美国海军舰船应用数据显示, 钛 制管系寿命为 40 a, 铜镍合金管系寿命只有 6~8 a。 国内开展了采用"钛合金"替代"铜合金"制造海水管路 系统的验证考核试验,宝钛提供的 TA2 钛无缝管 材、配套管件和钛法兰在整套试验系统运行近3 a 后,拆解检验管路及配套材料,均未发现有裂纹、 孔洞和腐蚀等异常情况。
- (2)降低成本。采用钛合金部件,虽一次投入成 本较高,但一次投入即可满足全寿命使用,使用过 程中仅需简单维护保养,大量节省维修和维护费 用。美海军舰船热交换器用的铜镍合金管每年大约 需更换 97 km, 而在 LPD17 两栖船坞运输舰的 2 个

表 2 我国舰船用钛及钛合金体系、性能及应用[1-3,6-9]

表 2	我国舰船用钛及钛合金体系、性能及应用'								
类别	牌号	合金成分	R _m /MPa	R _{p0.2} /MPa	A/%	Z/%	KV ₂ /J	性能特点	应用
	TA2	Cp-Ti	≥400	275~450	≥25	_	_	成型、焊接性能好,耐海水腐蚀	非耐压铸件、冷成型件、管 路等
	TA3	Cp-Ti	≥500	380~550	≥20	_	_	成型、焊接性能好,耐海水腐蚀	非耐压铸件、冷成型件、管 路等
低强	TA4	Ср-Ті	≥580	485~655	≥20	_	_	成型、焊接性能好,耐海水腐蚀	低强度承压壳体、冷成型 件、结构件等
	Ti- 31(TA22)	Ti-3Al-1Mo-1Zr- 0.8Ni	>637	>490	≥18	≥35	≥47	成型、焊接性好,耐180 ℃ 海水腐蚀	换热器、冷凝器、泵体、管路、阀门、压力容器、承载 焊接结构件等
	ZTA5	Ti-4Al-0.005B	≥590	≥490	≥10	≥25	≥24	铸造性能好	船舶推进、电子及辅助系统 的泵、阀等
	TA18 M	Ti-3Al-2.5V	≥620	≥515	≥15	_	_	冷成型性、焊接性优异	舰船排气管、喷气偏导装 置,舱盖、舱门等
	TA17	Ti-4Al-2V	685~835	≥560	≥10	_	_	良好焊接性能、抗腐蚀性能、 冲击韧性高	封头、声呐导流罩骨架、结 构件等
	TA5	Ti-4Al-0.005B	≥685	≥585	≥12	_	_	耐蚀、可焊性好	鱼雷发射装置、框架结构 件、船舶各类机械部件等
	ZTi60	Ti-5.5Al-4Sn- 2Zr-1Mo-1.0Ta- 0.5Nd-0.5Si	≥670	≥590	≥10	≥20	≥43	铸造性能好、耐蚀、可焊	各种耐压系统铸件等
中强	Ti70(TA23)	Ti-2.5Al-2Zr-1Fe	≥700	≥590	≥10	_	_	耐蚀性、透声性、冷成型、 焊接性好	透声罩、声呐导流罩、桅杆、冷成型件等
	Ti75(TA24)	Ti-3Al-2Mo-2Zr	≥730	≥630	≥13	≥25	_	耐蚀性、焊接性、成型性优异, 断裂韧性、冲击韧性高	船舶结构、压力容器、耐高 压管路、推进系统构件等
	Bti431	Ti-5Al-3Mo-1V	≥770	≥650	≥9	≥25	_	焊接性、铸造性良好	管材结构、紧固件、气瓶等 耐压罐体等
	Ti91	Ti-3Al-1V-1Zr- 1Fe	≥700	≥660	≥20	≥35	_	冷成型性、焊接性、耐蚀性、透 声性优异	透声罩、声呐导流罩等
	ZTC4	Ti-6Al-4V	≥835	≥765	≥5	≥12	_	抗裂纹扩展、抗疲劳、 铸造性能好	螺旋桨、可承受重载荷的壳 体等高强铸件
	Ti80(TA31)	Ti-6Al-3Nb-2Zr- 1Mo	≥880	≥785	≥10	≥40	_	耐蚀、可焊	紧固件、结构件、壳体等
	TC4ELI	Ti-6Al-4VELI	≥860	≥795	≥10	≥25	≥24	抗裂纹扩展、抗疲劳、耐腐蚀、 焊接性好	耐压壳体、高压容器、结构件、船舶部件、紧固件等
	TC4	Ti-6Al-4V	≥895	≥830	≥10	_	_	抗裂纹扩展、抗疲劳、耐腐蚀、 焊接性好	耐压壳体、发动机外壳、蒸 汽透平机叶片、蓄电器、船 舶部件、紧固件等
	TB8	Ti-15Mo- 3Al- 2.7Nb-0.25Si	825~1000	795~965	≥6	_	_	高强、塑性、韧性,耐蚀	高强紧固件、海水管路、弹 簧、弹射装置等
高强	TB9	Ti-3Al-8V-6Cr- 4Mo-4Zr	_	_	_	_	_	塑性好、强度和弹性高、 淬透性好、耐蚀性和抗盐应力 腐蚀性能优异	弹簧、紧固件等
	TC11	Ti-6.5V-3.5Mo- 1.5Zr-0.3Si	≥1010	≥910	≥8	≥23	≥24	高强、高韧、耐高温	高压压气机转子、低压压气 机叶片及轮盘等
	TiB19	Ti-3Al-1Mo-5V- 4Cr-2Zr	≥1175	≥1130	≥5	≥10	_	强度高、塑韧性好、焊接性好	船舶高压容器、筒体、机械 部件等
	Ti62A	Ti-6Al-2Sn-2Zr- 3Mo-1Cr-1V	≥1010	≥930	≥9	≥18	≥20	高强、高韧、耐冲击	大深度耐压壳体、耐压罐 体、紧固件等

注: 1)舰船用钛合金锻件规范 GJB 943A—2018; 2)舰船用钛及钛合金板材规范 GJB 944A—2018; 3)舰船用钛及钛合金棒材规范 GJB 9571—2018; 4)舰船用钛及钛合金铸件规范 GJB 9574—2018; 5)舰船用钛及钛合金无缝管材规范 GJB 9579—2018。

	及3 国内扩张人外配和省股间压汽中的灰、向由工艺及例件压能										
	国家	牌号	成型、焊接工艺		拉伸性的	能		潜艇名称	设计深度/mm	使用	
四豕 牌与		/PF 与	风望、浑按工乙	$\sigma_{0.2}$ /MPa	$\sigma_{\rm b}$ /MPa	A/%	Z/%	俏爬石柳	以口(不)及/ШШ	年份	
	俄罗斯	BT6	瓜瓣/拼焊 手工TIG焊接	≥800	≥850	≥10	≥20	"和平"号	6000	1987	
	美国	Ti-6Al-4VELI	整半球冲压成型 赤道缝电子束焊接 螺栓连接	≥760	≥825	≥8	≥15	新"阿尔文"号 Triton 36000/2	6500 11000	1994 2019	
	法国	Ti-6AL-4VELI	整半球冲压成型 螺栓连接	≥795	≥860	≥10	_	"鹦鹉螺"号	6000	1985	
	中国	TC4 ELI	整半球冲压成型 赤道缝电子束焊接	≥795	≥860	≥10	_	"深海勇士"号	4500	2017	
	中	TC4	瓜瓣/拼焊 手工TIG焊接	≥825	≥895	≥10	_	"蛟龙"号	7000	2009	
	日本	Ti-6Al-4VELI	整半球冲压成型 赤道缝电子束焊接	≥810	_	_	_	深海"6500"号	6500	1989	
	俄罗斯	ПТ-3B (对应国内TA17)	_	640~835	≥590	≥9	≥15	核潜艇	_	1960	

表 3 国内外裁人球船和潜艇耐压责体材质 制备工艺及材料性能

主海水配管系统上选用了 Gr.2 纯钛管材,约 1000 多 个管件, 总长度 3350 m 以上, 全寿命期节省成本达 1700 万美元。

综上所述, 钛材在管路系统的使用, 既可以减 重、又可以实现与本体同寿命,同时,降低成本。 近几年,国内已在022 艇等多型号海洋装备上批量 应用。

上层建筑

目前,在国内舰船上层建筑中也已有钛材应用

实例,如:桅杆用 Ti70(TA23)、雷达天线用 TA5 和 TA7棒材、机库蒙皮和框架结构用TA2和TA5板材。

美海军在 LPD17 两栖船坞运输舰的关键部位上 层建筑区也大量使用了钛,使其质量减轻约50%, 大大提高了该舰的稳定性[10]。

其他领域应用

除上述耐压壳体、管路系统和上层建筑大量用 钛材外, 国内外海洋装备上还有其他部件也有用 钛,应用实例见表 4。

表 4	国内外海洋装备其他部件用常见钛材
夜 4	国内外海洋装备县侧部针用吊见私例

(对应国内TA17)

序号	用途	常用牌号	产品类型
1	泵、阀	纯钛、ZTC4、ZTA5、ZTi60	铸件
2	螺旋桨	ZTC4	铸件
3	声呐导流罩、透声罩	Ті70、ПТ-3В	板材
4	框架结构	TA2、TA5、TC4	板材、型材
5	气瓶、耐压罐体	Bti341、TC4、TC4ELI、Ti62A	棒材、板材
6	冷却器/管/水套、冷凝器等	TA2、TA16、Ti75、Ti31	管材
7	紧固件、弹簧、销	TC4、TC4ELI、TC11、TB8、TB9(Ti38644)	棒材、丝材

结束语

钛合金不仅使海洋装备实现向"深、大、远、 高、低"的方向发展,也可完全实现与海洋装备本体 同寿命,是海洋装备的最佳选材[11-14]。目前,我国对 钛材在海洋装备上的应用也越来越重视, 用钛量也 在不断的增加。深海耐压壳体、海水管路、气瓶、 上层建筑、框架等将成为海洋用钛的重点发展 方向。

现阶段国内外钛材在船舶领域应用实例较多, 但相关规范中材料体系并不完善。希望相关单位组 织讨论并完善现行"钛制压力容器"、"材料与焊接"等 相关规范中的材料体系,以便于设计人员参考。

参考文献

- [1] 钱江, 王怡, 李瑶. 钛及钛合金在国外舰船上的应用. 舰船科学 技术, 2016, 38(11): 1
- [2] 杨英丽, 罗媛媛, 赵恒章, 等. 我国舰船用钛合金研究应用现状. 稀有金属材料与工程, 2011, 40(s2): 538
- [3] 杨英丽, 苏航标, 郭荻子, 等. 我国舰船钛合金的研究进展. 中国 有色金属学报, 2010, 20(s1): 1002
- [4] 孟祥军. 降低钛材价格、促进钛在舰船上的应用. 钛工业进展, 2003, 20(6): 39
- [5] 姜建伟, 曲银化, 刘正红. 我国航海级钛及钛合金现状思考. 船 舶材料与工程应用学术会议论文集//中国造船工程学会.敦煌,
- [6] 陈军,赵永庆,常辉.中国船用钛合金的研究和发展.材料导报, 2005(6): 67
- [7] 王镐, 祝建雯, 何瑜, 等. 钛在舰船领域的应用现状及展望. 钛工 业进展, 2003(6): 42
- [8] 周文萌. 船用钛合金装备材料及制备技术研究进展评述. 化工 管理, 2017(21): 92

- [9] 陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用. 钛工业进 展,2015,32(6):8
- [10] 匡蒙生, 胡伟民, 郭爱红, 等. 钛及钛合金在美海军舰船上的应 用. 鱼雷技术, 2012, 20(5): 331
- [11] 李文跃, 王帅, 刘涛, 等. 大深度载人潜水器耐压壳结构研究现 状及最新进展. 中国造船, 2016, 57(1): 210
- [12] 王文杰. 高性能先进舰船用合金材料的应用现状及展望. 材料 导报, 2013, 27(7): 98
- [13] 范丽颖, 刘俊玲, 安红. 钛在海洋工程上的应用现状及前景展望. 中国金属通报, 2006(Z2): 25
- [14] 方志刚, 刘斌, 李国明, 等. 舰船装备材料体系发展与需求分析. 中国材料进展, 2014, 33(7): 385

作者简介:海敏娜(1987--),女,陕西宝鸡人,工程 师,硕士,2015年毕业于西安建筑科技大学材料加工工 程专业,工作于宝鸡钛业股份有限公司,主要从事与海洋 装备领域用钛相关的研究。通信地址:721013陕西省宝 鸡市渭滨区高新大道 88号, E-mail: haiminna@126.com。