留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球交通用铝合金技术发展态势研究——基于CiteSpace知识图谱分析

黄洁 倪诚蔚 普康晶 杨晶媛

黄洁, 倪诚蔚, 普康晶, 杨晶媛. 全球交通用铝合金技术发展态势研究——基于CiteSpace知识图谱分析[J]. 金属世界, 2024 (1): 8-14. doi: 10.3969/j.issn.1000-6826.2022.07.0101
引用本文: 黄洁, 倪诚蔚, 普康晶, 杨晶媛. 全球交通用铝合金技术发展态势研究——基于CiteSpace知识图谱分析[J]. 金属世界, 2024 (1): 8-14. doi: 10.3969/j.issn.1000-6826.2022.07.0101
Jie HUANG, Chengwei NI, Kangjing PU, Jingyuan YANG. Research Situation Analysis of Global Transportation Aluminum Alloy Technology Based on CiteSpace Knowledge Map[J]. Metal World, 2024 (1): 8-14. doi: 10.3969/j.issn.1000-6826.2022.07.0101
Citation: Jie HUANG, Chengwei NI, Kangjing PU, Jingyuan YANG. Research Situation Analysis of Global Transportation Aluminum Alloy Technology Based on CiteSpace Knowledge Map[J]. Metal World, 2024 (1): 8-14. doi: 10.3969/j.issn.1000-6826.2022.07.0101

全球交通用铝合金技术发展态势研究——基于CiteSpace知识图谱分析

doi: 10.3969/j.issn.1000-6826.2022.07.0101
基金项目: 云南省科技计划资助项目(202004AL030015;202104AL030005)。
详细信息
    作者简介:

    黄洁(1986—),女,哈尼族,硕士,副研究员,工作于云南省科学技术情报研究院,主要从事科技情报与产业分析研究、决策咨询研究。通信地址:云南省昆明市盘龙区人民东路246号云南省科学技术情报研究院,E-mail:61454717@qq.com

    通讯作者:

    倪诚蔚(1983—),女,汉族,硕士,副研究员,工作于云南省科学技术情报研究院,主要从事科技情报与产业分析研究、环境技术研究。E-mail:43422682@qq.com

Research Situation Analysis of Global Transportation Aluminum Alloy Technology Based on CiteSpace Knowledge Map

  • 摘要: 交通运输设备轻量化趋势愈加明朗,而铝合金因其多种优良特性已成为实现轻量化交通的重要材料。本文通过文献计量学方法,着重分析全球交通用铝合金领域发文量、机构、国家及关键词等信息,绘制形成可视化网络图谱。结果显示:研究主要集中在汽车和航空领域,包括铝基复合材料和焊接技术;船舶用铝合金的研究重点为铝合金表面涂层;而轨道交通用铝合金的研究数量相对较少,且与汽车、航空领域的文献有较多交叉,表明其部分技术与汽车、航空用铝合金具有通用性。
  • 图  1  2010—2021年发表的论文量

    图  2  2010—2021年的引文量

    图  3  交通用铝合金领域技术主题聚类

    图  4  交通用铝合金领域技术演变时间图谱

    图  5  交通用铝合金领域技术点突变图谱(阴影表示持续时间)

    表  1  交通用铝合金技术领域发文量排名前十的国家

    序号国家发文量/篇占比/%
    1印度(INDIA)48726.31
    2中国(PEOPLES R CHINA)45924.80
    3美国(USA)1307.02
    4韩国(SOUTH KOREA)1286.91
    5日本(JAPAN)754.05
    6德国(GERMANY)713.84
    7波兰(POLAND)643.46
    8俄罗斯(RUSSIA)613.30
    9土耳其(TURKEY)583.13
    10英格兰(ENGLAND)462.49
    下载: 导出CSV

    表  2  交通用铝合金技术领域发文量排名前十的研究机构

    序号研究机构发文量/篇占比/%
    1哈尔滨工业大学(HARBIN INST TECHNOL)361.93
    2印度国立理工学院(NATL INST TECHNOL)301.61
    3中国科学院(CHINESE ACAD SCI)281.51
    4安娜大学(ANNA UNIV)211.13
    5印度理工学院(INDIAN INST TECHNOL)191.02
    6西北工业大学(NORTHWESTERN POLYTECH UNIV)191.02
    7西南交通大学(SOUTHWEST JIAOTONG UNIV)180.97
    8中南大学(CENT S UNIV)170.91
    9北京科技大学(UNIV SCI TECHNOL BEIJING)160.86
    10印度韦洛尔理工大学(VIT UNIV)150.81
    下载: 导出CSV

    表  3  技术主题研究热点统计

    序号频率中心度技术热点关键词中文含义
    1730.15Metal matrix Composite金属基复合材料
    23190.07Mechanical property机械性能
    3780.07Friction stir welding搅拌摩擦焊接
    4750.06Optimization优化
    5240.06Tensile strength抗拉强度
    620.06Springback回弹
    73600.05Microstructure微观结构
    8260.03Numerical simulation数值模拟
    9120.03Finite element analysis有限元分析
    1090.03Extrusion挤压
    11700.02Corrosion腐蚀
    12460.02Stir casting搅拌铸造
    13420.02Tensile property拉伸性能
    14400.02Friction摩擦
    15320.02Heat treatment热处理
    16210.02Coating图层
    17180.02Formability成形性
    18170.02Resistance电阻
    19160.02Powder metallurgy粉末冶金
    20150.02Graphite石墨
    2130.02Surface treatment表面处理
    22210.01Surface roughness表面粗糙度
    23180.01Matrix composite基体复合材料
    下载: 导出CSV
  • [1] 李烨. 浅谈我国交通运输经济现状与未来发展方向. 绿色环保建材, 2019(9):254
    [2] 聂德键,罗铭强,陈文泗,等. 交通运输用铝合金材料研究进展. 有色金属加工, 2016,45(5):15
    [3] 梁国强. 国内文献计量学综述. 科技文献信息管理, 2013,27(4):58
    [4] 陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能. 科学学研究, 2015,33(2):242
    [5] 天风期货. 印度第二波疫情浪潮来袭,对铝工业有何影响?(2021–05–06)[2022–07–01]. http://db.cnmn.com.cn/NewsShow.aspx?id=427590
    [6] 李杰,陈美超. CiteSpace:科技文本挖掘及可视化. 2版. 北京:首都经济贸易大学出版社,2017
    [7] 李家奇,杨钢,陈俊宇,等. 汽车轻量化铝合金研究进展. 云南冶金, 2020,49(5):68
    [8] Mohanavel V, Rajan K, Arul S. Production, microstructure and mechanical behavior of AA6351/TiB2 composite synthesized by direct melt reaction method. Mater Today Proc, 2017, 4(2): 3315 doi: 10.1016/j.matpr.2017.02.218
    [9] Reddy A P, Krishna P V, Rao R N, et al. Silicon carbide reinforced aluminium metal matrix nano composites: A review. Mater Today Proc, 2017, 4(2): 3595
    [10] Jagannatham M, Prathap C, Bakshi S, et al. Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review. Carbon, 2020: 16014
    [11] Gupta P K, Srivastava R K. Fabrication of ceramic reinforcement aluminium and its alloys metal matrix composite materials: A review. Mater Today Proc, 2018, 5(9): 18761 doi: 10.1016/j.matpr.2018.06.223
    [12] Sarada B N, Murthy P L S, Ugrasen G. Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique. Mater Today Proc, 2015, 2(4/5): 2878
    [13] Mohanavel V, Rajan K, Kumar S S, et al. Study on mechanical properties of graphite particulates reinforced aluminium matrix composite fabricated by stir casting technique. Mater Today Proc, 2018, 5(1): 2945 doi: 10.1016/j.matpr.2018.01.090
    [14] Prangnell P, Haddadi F, Chen Y C. Ultrasonic spot welding of aluminium to steel for automotive applications-microstructure and optimisation. Mater Sci Technol, 2011, 27(3): 617 doi: 10.1179/026708310X520484
    [15] Dwivedi S P. Effect of process parameters on tensile strength of friction stir welding A356/C355 aluminium alloys joint. J Mech Sci Technol, 2014, 28(1): 285 doi: 10.1007/s12206-013-0967-0
    [16] Kayode O, Akinlabi E T. An overview on joining of aluminium and magnesium alloys using friction stir welding (FSW) for automotive lightweight applications. Mater Res Express, 2019, 6(11): 2005
    [17] Ogawa Y, Akebono H, Tanaka K, et al. Effect of welding time on fatigue properties of friction stir spot welds of al to carbon fibre-reinforced plastic. Sci Technol Weld Joining, 2019, 24(3): 235 doi: 10.1080/13621718.2018.1535781
    [18] Kumar A, Khurana M K, Singh G. Modeling and optimization of friction stir welding process parameters for dissimilar aluminium alloys. Mater Today Proc, 2018, 5(11): 25440 doi: 10.1016/j.matpr.2018.10.349
    [19] 张新明,刘胜胆. 航空铝合金及其材料加工. 中国材料进展, 2013,32(1):39
    [20] 刘牧东. 航空铝合金材料低温裂纹扩展研究现状与展望. 航空工程进展, 2020,11(1):10
    [21] Rioja R J, Liu J. The evolution of Al–Li base products for aerospace and space applications. Metall Mater Trans A, 2012, 43(9): 3325 doi: 10.1007/s11661-012-1155-z
    [22] Imran M, Khan A R A. Characterization of Al-7075 metal matrix composites: a review. J Mater Res Technol, 2019, 8(3): 3347 doi: 10.1016/j.jmrt.2017.10.012
    [23] Li P T, Li Y G, Wu Y Y, et al. Distribution of TiB2 particles and its effect on the mechanical properties of A390 alloy. Mat Sci Eng A, 2012, 546: 146 doi: 10.1016/j.msea.2012.03.042
    [24] Vinayagam M. Synthesis and evaluation on mechanical properties of LM4/AlN alloy based composites. Energ Source Part A, 2022, 44(1): 1888 doi: 10.1080/15567036.2019.1647313
    [25] Bommana D, Dora T R K, Senapati N P, et al. Effect of 6wt% particle(B4C+SiC) reinforcement on mechanical properties of AA6061 aluminum hybrid MMC. Silicon, 2022, 14(8): 4197
    [26] Fu R D, Sun Z Q, Sun R C. et al Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding. Mater Design, 2011, 32(10): 4825 doi: 10.1016/j.matdes.2011.06.021
    [27] SanoY, Masaki K, Gushi T, et al. Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating. Mater Design, 2012, 36: 809 doi: 10.1016/j.matdes.2011.10.053
    [28] Fu B L, Qin G L, Meng X M, et al. Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser. Mat Sci Eng A, 2014, 617: 1 doi: 10.1016/j.msea.2014.08.038
    [29] Yang Z B, Tao W, Li L Q, et al. Double-sided laser beam welded t-joints for aluminum aircraft fuselage panels: process, microstructure, and mechanical properties. Mater Design, 2012, 33: 652 doi: 10.1016/j.matdes.2011.07.059
    [30] Verma S, Gupta M, Misra J P. Study of thermal cycle, mechanical, and metallurgical properties of friction stir welded aviation grade aluminum alloy. Proc Inst Mech Eng Part G, 2019, 233(11): 4202 doi: 10.1177/0954410018816601
    [31] 罗彦云,蒲全卫,左国良. 铝合金和镁合金在轨道交通装备轻量化上的应用. 电力机车与城轨车辆, 2020,43(3):1 doi: 10.16212/j.cnki.1672-1187.2020.03.001
    [32] Sheng X F, Li K, Wu W K, et al. Microstructure and mechanical properties of friction stir welded joint of an aluminum alloy sheet 6005A-T4. Metals, 2019, 9(11): 1152 doi: 10.3390/met9111152
    [33] Daneji A, Ali M, Pervaiz S. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 aluminium alloy. IOP Conf Ser Mater Sci Eng, 2018, 346: Art No. 012041
    [34] Barbieri G, Cognini F, Lapi G, et al. Mechanical behavior of aluminum sandwiches made by laser welding. Procedia Eng, 2015, 109: 427 doi: 10.1016/j.proeng.2015.06.256
    [35] Singla Y K, Chhibber R, Bansal H, et al. Wear behavior of aluminum alloy 6061-based composites reinforced with SiC, Al2O3, and red mud: a comparative study. JOM, 2015, 67(9): 2160 doi: 10.1007/s11837-015-1365-0
    [36] Sohag M A Z, Gupta P, Kondal N, et al. Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al–Cu alloy metal matrix composite. Mater Today Proc, 2020, 21: 1407 doi: 10.1016/j.matpr.2019.08.179
    [37] Kim S J, Jang S K, Han M S, et al. Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship. Trans Nonferrous Met Soc China, 2013, 23(3): 636 doi: 10.1016/S1003-6326(13)62510-8
    [38] Pathak S S, Mendon S K, Blanton M D, et al. Magnesium-based sacrificial anode cathodic protection coatings (Mg-Rich Primers) for aluminum alloys. Metals, 2012, 2(3): 353 doi: 10.3390/met2030353
    [39] Fahim J, Hadavi S M M, Ghayour H, et al. Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy. Wear, 2019, 424: 122
    [40] Lee S J, Han M S, Kim S J. Evaluation of corrosion resistance for two-step aluminum anodizing with processing time. J Nanosci Nanotechnol, 2016, 16(11): 11262 doi: 10.1166/jnn.2016.13490
    [41] Lee L D, Kim S J. Influence of thermally sprayed WC–Co‒Cr coatings on the corrosion characteristics of Ni‒Al bronze alloy. Int J Electrochem Sci, 2021, 16(7): 1
    [42] EgorkinV S, Vyalyi I E, Gnedenkov S V. Corrosion properties of Amg3 aluminum alloy treated by short-Pulse plasma electrolytic oxidation in marine conditions. Mar Intellect Techno, 2021(4): 117
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  19
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回