留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高熵合金的高通量制备与机器学习驱动高熵合金

张红敏 陈淑英

张红敏, 陈淑英. 高熵合金的高通量制备与机器学习驱动高熵合金[J]. 金属世界, 2024 (1): 1-7. doi: 10.3969/j.issn.1000-6826.2023.09.1101
引用本文: 张红敏, 陈淑英. 高熵合金的高通量制备与机器学习驱动高熵合金[J]. 金属世界, 2024 (1): 1-7. doi: 10.3969/j.issn.1000-6826.2023.09.1101
Hongmin ZHANG, Shuying CHEN. High-Throughput Preparation of High Entropy Alloys and Machine Learning Driven High Entropy Alloys[J]. Metal World, 2024 (1): 1-7. doi: 10.3969/j.issn.1000-6826.2023.09.1101
Citation: Hongmin ZHANG, Shuying CHEN. High-Throughput Preparation of High Entropy Alloys and Machine Learning Driven High Entropy Alloys[J]. Metal World, 2024 (1): 1-7. doi: 10.3969/j.issn.1000-6826.2023.09.1101

高熵合金的高通量制备与机器学习驱动高熵合金

doi: 10.3969/j.issn.1000-6826.2023.09.1101
基金项目: 国家自然科学基金资助项目(52001271)
详细信息
    作者简介:

    张红敏(1998—),女,2020年本科毕业于烟台大学,现为烟台大学精准材料高等研究院硕士研究生,主要研究方向是NiCoCrFe系高熵合金的高通量制备与性能研究。通信地址:山东省烟台市莱山区烟台大学精准材料高等研究院;E-mail:zhanghongmin@s.ytu.edu.cn

    陈淑英(1988—),女,烟台大学精准材料高等研究院副教授、硕士研究生导师,2011年本科毕业于济南大学,2014年硕士毕业于北京科技大学,2019年博士毕业于美国田纳西大学,后赴美国匹兹堡大学进行博士后研究工作。主要从事高性能金属材料的高通量设计与研发,金属材料的成分设计、微观组织与力学性能优化,金属材料的蠕变与疲劳性能等研究。发表论文40余篇,包括Acta Materialia、Scripta Materialia、Journal of Materials Research and Technology、Journal of Materials Science & Technology等。通信地址:山东省烟台市莱山区烟台大学精准材料高等研究院;E-mail:sychen2014@gmail.com

High-Throughput Preparation of High Entropy Alloys and Machine Learning Driven High Entropy Alloys

  • 摘要: 高熵合金是近十几年发展起来的新型合金,其独特的设计理念和组织结构使之具有一系列优异的性能。而如何快速有效地进行核心成分的高效设计和筛选是研究高性能高熵合金面临的关键问题。目前高通量的设计、制备和表征技术,可促进材料的研究从传统的试错模式向低成本、高效快速响应模式的转变,从而实现新材料的筛选与研发的快速发展。通过机器学习对高通量实验获得的海量数据进行训练学习,可挖掘隐含在合金中的内在规律及优异性能,实现对具有目标性能的合金成分快速精准的预测。
  • 图  1  高熵合金组合合成和处理的RAP方法[7]

    图  2  增材制造系统示意图[11]

    图  3  单个单元素靶材共溅射的Cr–Mn–Fe–Co–Ni示例性薄膜库[7]:(a)Cr–Mn–Fe–Co–Ni各元素浓度薄膜库;(b)五个共聚焦的溅射源

    图  4  扩散偶示意图[7]

    图  5  蜂窝阵列结构示意图[14]

    图  6  机器学习方法在材料科学中的应用[19]

    图  7  镍钛基记忆合金的设计流程图[21]

  • [1] Cantor B, Multicomponent high-entropy Cantor alloys. Prog Mater Sci, 2021, 120: Art No. 100754
    [2] 张勇. 高熵合金的发现和发展. 四川师范大学学报(自然科学版),2022,45(6):711 doi: 10.3969/j.issn.1001-8395.2022.06.001
    [3] George E P, Raabe D, Ritchie R O. High-entropy alloys. Nat Rev Mater, 2019, 4: 515 doi: 10.1038/s41578-019-0121-4
    [4] Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-Entropy alloy design. JOM, 2012, 64(7): 839 doi: 10.1007/s11837-012-0365-6
    [5] Zhang F, Zhang C, Chen S L, et al. An understanding of high entropy alloys from phase diagram calculations. Calphad, 2014, 45: 1 doi: 10.1016/j.calphad.2013.10.006
    [6] Yeh J W, Chen S K, Lin S. J, et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [7] Li Z M, Ludwig A, Savan A, et al. Combinational metallurgical synthesis and processing of high-entropy alloys. J Mater Res, 2018, 33(19): 3156 doi: 10.1557/jmr.2018.214
    [8] Pradeep K G, Tasan C C, Yao M J, et al. Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Mat Sci Eng A, 2015, 648: 183 doi: 10.1016/j.msea.2015.09.010
    [9] Li W D, Xie D, Li D Y, et al. Mechanical behavior of high-entropy alloys. Prog Mater Sci, 2021, 118: Art No. 1000777
    [10] Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater, 2016, 116: 63 doi: 10.1016/j.actamat.2016.06.025
    [11] Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo–Nb–Ta–W high-entropy alloys via additive manufacturing. Mater Design, 2020, 187: Art No. 108358
    [12] Akbari A, Balk T J. Combinatorial thin film screening to identify single-phase, non-equiatomic high entropy alloys in the MnFeCoNiCu system. MRS Commun, 2019, 9(2): 750 doi: 10.1557/mrc.2019.53
    [13] Shang G F, Jiang L, Liu Z Z, et al. High-throughput experimental study on the microstructural and compositional variations of mechanical properties for AlCoCrFeNi high entropy alloys. J Alloy Compd, 2022, 917: 1
    [14] Zhao L, Zhou Y X, Wang H, et al. High-throughput synthesis and characterization of a combinatorial materials library in bulk alloys. Metall Mater Trans A, 2021, 52(4): 1159 doi: 10.1007/s11661-021-06149-0
    [15] 赵鼎祺,乔珺威,吴玉程. 机器学习辅助高熵合金设计的研究进展. 中国材料进展,2021,40(7):508
    [16] 文成. 基于机器学习的高熵合金成分设计与性能优化[学位论文]. 北京: 北京科技大学, 2022
    [17] Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun, 2015, 6: 6529 doi: 10.1038/ncomms7529
    [18] Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Mater, 2020, 182: 278 doi: 10.1016/j.actamat.2019.10.043
    [19] Liu Y, Zhao T L, Ju W W, et al. Materials discovery and design using machine learning. J Materiomics, 2017, 3(3): 159 doi: 10.1016/j.jmat.2017.08.002
    [20] Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater, 2020, 185: 528 doi: 10.1016/j.actamat.2019.11.067
    [21] Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design. Nat Commun, 2016, 7: Art No. 11241
    [22] Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci Adv, 2018, 4(4): 1566 doi: 10.1126/sciadv.aaq1566
    [23] Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater, 2019, 170: 109 doi: 10.1016/j.actamat.2019.03.010
  • 加载中
图(7)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  73
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回