留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳在α-Fe–Cr(110)表面及内部扩散行为的第一性原理研究

王一鸣 李睿 牛明

王一鸣, 李睿, 牛明. 碳在α-Fe–Cr(110)表面及内部扩散行为的第一性原理研究[J]. 金属世界. doi: 10.3969/j.issn.1000-6826.2022.07.2102
引用本文: 王一鸣, 李睿, 牛明. 碳在α-Fe–Cr(110)表面及内部扩散行为的第一性原理研究[J]. 金属世界. doi: 10.3969/j.issn.1000-6826.2022.07.2102
Yiming WANG, Rui LI, Ming NIU. First-principles Study of Diffusion Behavior of Carbon in Surface and the Internal of the α-Fe–Cr (110)[J]. Metal World. doi: 10.3969/j.issn.1000-6826.2022.07.2102
Citation: Yiming WANG, Rui LI, Ming NIU. First-principles Study of Diffusion Behavior of Carbon in Surface and the Internal of the α-Fe–Cr (110)[J]. Metal World. doi: 10.3969/j.issn.1000-6826.2022.07.2102

碳在α-Fe–Cr(110)表面及内部扩散行为的第一性原理研究

doi: 10.3969/j.issn.1000-6826.2022.07.2102
详细信息
    作者简介:

    王一鸣(1987—),男,山西省大同市人,铸造工程师。2015年毕业于太原科技大学材料加工工程专业,主要研究方向:造型材料与铸造工艺的研究。通信地址:山西省大同市平城区前进街1-1号;E-mail:627082076@qq.com

First-principles Study of Diffusion Behavior of Carbon in Surface and the Internal of the α-Fe–Cr (110)

  • 摘要: 碳钢–奥氏体不锈钢异种钢焊接接头界面区域的碳偏聚现象,严重降低了焊接件的性能和使用寿命,本文基于第一性原理赝势平面波方法从原子层次探讨了C(碳)原子在α-Fe(110)和α-Fe–Cr(110)表面结构体系中占位及偏聚行为。赝势平面波方法是基于密度泛函理论即第一性原理计算不同体系的基态属性,平面波具有标准正交化和能量单一性的特点,引入赝势可以保证计算中用较少的平面波数就可以获得较为可靠的结果。计算结果表明,C原子固溶于α-Fe(110)、α-Fe–Cr(110)表面结构体系中,均形成稳定的结构;α-Fe–Cr–C(110)体系中随着Cr含量的增加有利于减缓C在表界面的偏聚;C原子更易偏聚于α-Fe(110)表界面,这一特点促使C更多的偏聚于碳钢-奥氏体钢界面的碳钢一侧。α-Fe–Cr(110)结构表面的稳定性逐渐增强,形成能力逐渐增大。
  • 图  1  α-Fe–C(110)和α-Fe–Cr–C(110)表面超胞示意图:(a) C吸附于α-Fe(110)和Cr质量分数为4.17%的α-Fe–Cr (110)表层的结构模型;(b) C固溶于α-Fe(110)和Cr质量分数为8.33%的α-Fe–Cr (110)次表层(1~2间隙)的结构模型;(c) C固溶于α-Fe(110)和Cr质量分数为12.5%的α-Fe–Cr (110)距表面2~3层间隙的结构模型;(d) C固溶于α-Fe(110)和Cr质量分数为16.67%的α-Fe–Cr (110)距表面3~4层间隙的结构模型

    图  2  C位置对α-Fe-C(110)表面结构体系结合能(a)和形成热(b)的影响

    图  3  Cr质量分数对α-Fe–Cr (110)表面结构体系结合能(a)和形成热(b)的影响

    图  4  C位置对不同Cr含量α-Fe–Cr–C(110)表面结构体系结合能(a)和形成热(b)的影响

    图  5  Cr含量对C原子在α-Fe–Cr–C(110)表面聚集行为的影响

    图  6  C原子在碳钢/奥体钢界面偏聚示意图

  • [1] Hajiannia I, Shamanian M, Kasiri M. Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding. Mater Design, 2013, 50: 566 doi: 10.1016/j.matdes.2013.03.029
    [2] Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater Des, 2014, 60: 678 doi: 10.1016/j.matdes.2014.03.057
    [3] Pavlovsky J, Million B, Cíha K, et al. Carbon redistribution between an austenitic cladding and a ferritic steel for pressure vessels of a nuclear reactor. Mat Sci Eng A, 1991, 149(1): 105 doi: 10.1016/0921-5093(91)90791-K
    [4] Mcpherson N A, Chi K, Mclean M S. Structure and properties of carbon steel to duplex stainless steel submerged arc welds. Mater Sci Technol, 2003, 19(2): 219 doi: 10.1179/026708303225009643
    [5] Srinivasan P B, Muthupandi V, Sivan V, et al. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel. J Mater Eng Perform, 2006, 15(6): 758 doi: 10.1361/105994906X150902
    [6] 卢金斌,王志新,陈建泰. 1Cr17Mn6Ni5N与Q235异种钢焊接接头组织分析. 焊接技术. 2008(2):15 doi: 10.3969/j.issn.1002-025X.2008.02.005
    [7] Serikov V V, Kleinerman N M, Vershinin A V, et al. Formation of solid solutions of gallium in Fe–Cr and Fe–Co alloys: Mossbauer studies and first-principles calculations. J Alloy Compd, 2014, 614: 297 doi: 10.1016/j.jallcom.2014.06.068
    [8] Airiskallio E, Nurmi E, Väyrynen I J, et al. Magnetic origin of the chemical balance in alloyed Fe–Cr stainless steels: first-principles and ising model study. Comp Mater Sci, 2014, 92: 135 doi: 10.1016/j.commatsci.2014.05.036
    [9] Zhang Z P, Lei M K. The states of nitrogen atoms in the processing of Ni–Cr alloy surface nitriding modification. Appl Surf Sci, 2014, 301: 346 doi: 10.1016/j.apsusc.2014.02.076
    [10] Zhang Z P, Li P. Study on the trap site in Ni–Cr alloy by first principle approach. Vacuum, 2014, 101: 321 doi: 10.1016/j.vacuum.2013.10.009
    [11] Senninger O, Martínez E, Soisson F, et al. Atomistic simulations of the decomposition kinetics in Fe–Cr alloys: Influence of magnetism. Acta Mater, 2014, 73: 97 doi: 10.1016/j.actamat.2014.03.019
    [12] Terentyev D, Bonny G, Domain C, et al. Mechanisms of radiation strengthening in Fe–Cr alloys as revealed by atomistic studies. J Nucl Mater, 2013, 442(1/3): 470
    [13] Gao Y, Lv Z Q, Sun S H, et al. First principles study on surface structure and stability of alloyed cementite doped with Cr. Mater Lett, 2013, 100: 170 doi: 10.1016/j.matlet.2013.02.095
    [14] He J, Luan Y, Guo H B, et al. The role of Cr and Si in affecting high-temperature oxidation behaviour of minor Dy doped NiAl alloys. Corros Sci, 2013, 77: 322 doi: 10.1016/j.corsci.2013.08.020
    [15] Liu W M, Zhou Q J, Li L S, et al. Effect of alloy element on corrosion behavior of the huge crude oil storage tank steel in seawater. J Alloy Compd, 2014, 598: 198 doi: 10.1016/j.jallcom.2014.01.181
    [16] Wang C, Chen J J, Li Y, et al. Magnetic properties, microstructure and corrosion behavior of Nd10Y1Fe85- xNb3.5Ti0.5B x (x=14–22) and Nd10Y1Fe69Nb3.5M0.5B16(M=Ti, Zr, Cr, Mo) bulk nanocrystalline magnets. J Alloy Compd, 2013, 555: 16
    [17] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter, 2002, 14(11): 2717 doi: 10.1088/0953-8984/14/11/301
    [18] Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys rev lett, 1979, 43(20): 1494 doi: 10.1103/PhysRevLett.43.1494
    [19] Kresse G, Hafner J. Ab initio molecular dynamics of liquid metals. Phys Rev B, 1993, 47(1): 558 doi: 10.1103/PhysRevB.47.558
    [20] Laan G V D. Polaronic satellites in x-ray-absorption spectra. Phys Rev B, 1990, 41(17): 12366 doi: 10.1103/PhysRevB.41.12366
    [21] Hohenberg P, Kohn W. Inhomogneous electron gas. Phys Rev, 1964, 136(3B): 864 doi: 10.1103/PhysRev.136.B864
    [22] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41(11): 7892 doi: 10.1103/PhysRevB.41.7892
    [23] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13(12): 5188 doi: 10.1103/PhysRevB.13.5188
    [24] Wu M M, Wen L, Tang B Y, et al. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy. J Alloy Compd, 2010, 506(1): 412 doi: 10.1016/j.jallcom.2010.07.018
    [25] Fu C L, Wang X D, Ye Y Y, et al. Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation. Intermetallics, 1999, 7(2): 179 doi: 10.1016/S0966-9795(98)00018-1
    [26] 陈律,彭平,李贵发,等. B2-RuAl点缺陷结构的第一原理计算. 稀有金属材料与工程. 2006(7):1065
    [27] Song Y, Guo Z X, Yang R, et al. First principles study of site substitution of ternary elements in NiAl. Acta Mater, 2001, 49(9): 1647 doi: 10.1016/S1359-6454(01)00052-0
    [28] Sahu B R. Electronic structure and bonding of ultralight LiMg. Mat Sci Eng B, 1997, 49(1): 74 doi: 10.1016/S0921-5107(97)00068-8
    [29] 梁婷,张国英,李丹,等. Ni–Cr–Al合金择优氧化及其影响机理的第一原理研究. 沈阳师范大学学报(自然科学版). 2011,29(2):194
  • 加载中
图(6)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  17
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-10-05

目录

    /

    返回文章
    返回